
PUPIBinary

A tool for binary function optimisation
inspired in the behaviour of urban pigeons

User Guide

Version 1.4

Sergio A. Rojas, PhD.

Universidad Distrital Francisco José de Caldas

Bogotá, Colombia, 2020

PUPIBinary Version 1.4 - User guide.

Copyright c© 2020 Sergio A. Rojas

This document is distributed under the CC BY-NC-ND license (Creative Commons
Attribution-Noncommercial-NoDerivatives 3.0). Any other unauthorised form of dis-
tribution, copying, duplication, reproduction, or sale (total or partial) of the content of
this document, both for personal and commercial use, will constitute an infringement
of copyright. This guide is an original work of its author, and therefore it is protected
by the laws that regulate copyright and intellectual property. The opinions and points
of view expressed in this document are personal to the author and do not compromise
the policies, intentions, strategies, or official position of any other organism, company,
organisation, service or person mentioned in it.

The author has made every effort to ensure that this guide is free from errors or omissions.
However, the author accept no responsibility for offence, damage or loss caused to any
person acting or endorsing actions using the material contained in this document.

First Edition, August 2020
Bogotá, Colombia

Overview

PUPIBinary is a software tool designed to find approximate solutions to optimisation
problems whose decision variables take discrete values in the binary domain, in other
words, variables taking values 0 or 1. The method used by PUPIBinary to find a solution,
is derived from a recently proposed particle swarm algorithm inspired on the foraging
behaviour of urban pigeons. The new variant of the algorithm is obtained by mapping the
real–valued search space of the original version into a discrete binary–valued encoding.
Furthermore, the extended version was adapted to the framework of an agent–based
model in order to develop this software tool.

The approach to translate the original pigeon-inspired method consist of separating
the search space of real–valued vector of pigeon locations from the solution space of
binary-valued variables of the optimisation problem. This can be done by means of
an encoding function, a technique known as genotype–to–phenotype mapping widely
used in evolutionary computation algorithms. In the current version, the mapping is
performed by applying a cut-off threshold to the coordinates of the pigeons’ locations.
In this way, the tool is able to solve high-dimensional binary problems of up to 256
variables.

PUPIBinary v1.4 has been released under GNU General Public License (GPLv3); it is
available online at:

http://modelingcommons.org/browse/one_model/6400

iii

http://modelingcommons.org/browse/one_model/6400

Contents

Overview iii

1 The optimisation tool 1
1.1 What is PUPIBinary? . 1
1.2 How it works . 2
1.3 How to use it . 3
1.4 Other distinctive features . 5
1.5 Try it yourself . 5
1.6 Extending the tool . 5
1.7 References . 6

2 Installation and execution 7
2.1 Online version . 7
2.2 Desktop version . 8

3 Source code 11

4 Software license 17

v

Chapter 1

The optimisation tool

1.1 What is PUPIBinary?
PUPIBinary is a software tool developed as an extension of an agent-based model for
numeric real-valued unconstraint optimisation to binary domains, inspired in the foraging
behaviour of urban pigeons (see [1] for details). Optimisation problems with binary
domains contemplate variables taking values 0 or 1, representing decisions associated
to conditions being false or true. Hence, these kind of domains are of interest in many
applications in engineering and management.

The tool maintains an internal representation of the pigeons locations which is
transformed to binary values via a threshold function. The movement rules of the
internal representation are identical to the continuous-valued version, and the inspiration
of the original method regarding foraging strategies of this species, is sustained: a
leader pigeon (coloured fuchsia) located at a promising source of food is pursued by
a flock of follower pigeons (coloured blue), while simultaneously other pigeons are
walking around (coloured green), exploring the space for new sources of food too. Food
sources in this context refers to maximal values of the binary cost function that is being
optimised.

1

1.2 How it works

A benchmark of binary problems is included. Each PROBLEM consists of finding a
bitstring that maximises a cost function. In the current version, the tool features three
functions: "oneMax", "powSum" and "squareWave", with the following definitions:.

Problem Definition Description

oneMax f (b) = ∑
d
i=1 bi

Counts the total number of ones in the
vector b. The optimum is:

f (1,1, . . . ,1
←d times→

) = d

squareWave f (b) = ∑
d
i=1

(
1−abs

(
bi−

(
2
⌊ i

T

⌋
−
⌊ 2i

T

⌋)))
Computes the similarity of vector b
to a binarised version of a sinusoidal
wave with period T =

√
d. The opti-

mum is:

f (0,0,0,1,1,1
← d

T bits →

, . . . ,0,0,0,1,1,1
← d

T bits →

)= d

powSum f (b) = ∑
d
i=1 bi× log2 2i−1

Computes the sum of the powers cor-
responding to positions set to one in
the binary vector b. The optimum is,
likewise oneMax, the all-ones vector:

f (1,1, . . . ,1
←d times→

) =
d

∑
i=0

i =
d(d +1)

2

Pigeons are characterised by an internal array of continuous-valued coordinates of
size DIM. These coordinates are mapped to binary coordinates via a cut-off threshold
called TAU. This is a mechanism similar to the genotype-to-phenotype mapping widely
used in evolutionary algorithms (implemented in the tool as the GPM code block). Two
types of pigeon breeds were defined, namely followers and walkers. The initial popula-
tion is created with an amount of pigeons given by the parameter POP-SIZE, with the
subset of walkers assigned randomly in proportion to the parameter WALKERS-RATE;
the remainder pigeons are assigned to the subset of followers.

At each step of the simulation, the tool performs four simple actions: find the leader,
move the followers, move the walkers and update the best solution found so far. These
actions correspond to the following code routines implemented in the software:

• UPDATE-LEADER: chooses as leader pigeon the one having the best fitness
and updates the best fitness ever if necessary. Fitness is computed with the
aforementioned cost functions depending on the chosen problem.

• FOLLOW-MOVE: moves each follower towards the leader in one randomly
chosen dimension, with a step-size ALPHA plus a random shift in its orientation
due to wind or collisions.

2

• WALK-MOVE: moves each walker around randomly with a step-size SIGMA,
again in one randomly chosen dimension). The last two movement rules corre-
spond to the exploration/exploitation mechanisms of the optimisation algorithm.

The simulation is terminated either after a maximum number of steps, MAX-STEPS, or
when the truth optimal solution is found prematurely. Besides, the software was imple-
mented using the special–purpose ABM developing platform NetLogo 6.1.0 (see [2]).

1.3 How to use it

Firstly choose an optimisation PROBLEM to be solved, from the pull-down list. For
any of these problems, then define a particular dimension DIM. Additionally, choose the
algorithm parameters POP-SIZE, WALKERS-RATE, TAU, ALPHA and SIGMA. You
can also set the termination criterium MAX-TICKS. Then press SETUP, then GO.

The initial genotypes of the population of pigeons will be assigned randomly and
their phenotypes would be obtained. Afterwards, at each time step pigeons move
according to its role, the population fitness is updated, and if needed, the leader is
re-assigned. The simulation view area will display the phenotype, or bitstring, of the
best pigeon found so far. This bitstring is reshaped and displayed as a 2D grid of binary
cells (black cells correspond to bits set to 1 in the bitsring, whereas white cells to bits
set to 0). The first bit in the bitstring is located in the bottom-left corner of the grid, and
the last bit in the upper-right corner, as it is illustrated below:

3

The output monitors show the fitness (cost) of the true solution for the problem, the
best fitness ever found by the algorithm during the simulation, and the fitness associated
to the current leader. If the algorithm is able to find the true solution, the simulation
stops and the BEST-TICK and RUNTIME monitors will display a "!!!" sign inserted
behind their actual values. Otherwise the simulation finishes when MAX-TICKS are
elapsed.

Lastly, the tool also outputs the plot of the leader fitness vs time, the plot of fitness
of the best solution found vs time, the histogram of fitness of the population and the plot
of flock cohesion vs time if the COHESION? switch is enabled. The latter implies an
additional cost to the running time, as the software needs to compute distances between
all the pigeons in the follower’s flock.

4

1.4 Other distinctive features
Although the actual locations of the pigeons can not be visualised (because the problems
have high-dimensional search spaces), one can notice that the leader and the flock move
out from one local minima to another. This occurs because every certain number of ticks,
the entire population become walkers wandering about other regions of the search space.
This phenomenon is explained by the fitness variation of the leader pigeon during the
simulation timeline, as it can be seen in the corresponding plot. Nonetheless, the best
found ever solution always has an increasing fitness as it can be verified in its respective
plot. Besides, the flock formation behaviour is suggested by the periodic patterns that
appear in the cohesion plot.

Lastly, we remark that the pattern of solutions showed in the view area resemble
a blacked display for the "oneMax" and "powSum" problems, and a half-and-half
black and white display for the "squareWave" problem, as it was expected from their
mathematical definitions. Notice that for the "powSum" problem, the last bits to be set
are those in the bottom of the view (the least significant loci of the bitstring), as they
contribute the least to its cost function.

1.5 Try it yourself
Experiment with different DIM sizes for each problem and compare if a different
configuration of parameters is needed. For starters, we suggest the following settings:

• DIM = 100

• POP-SIZE = 40,

• MAX-TICKS = 40000,

• TAU = 0.5

• WALKERS-RATE = 0.2,

• ALPHA = 0.9,

• SIGMA = 0.1,

1.6 Extending the tool
An interesting question arising is if the convergence speed of the algorithm can be
improved without compromising its simplicity for practical purposes, for example using
dynamic updates of the step sizes of pigeon movements. Another related idea worth of
exploring is if convergence speedup an be achieved by hybridising the model with local
search techniques.

Finally, it would be appealing to include additional binary problems and try to solve
them with this tool. For this purpose, users only need to add a code block that computes
the cost function of the new problem, based on the bitstring phenotype of the pigeons,
in addition to the TRUE-BEST-FITNESS value in the SETUP-PROBLEM procedure.
We suggest for example, studying combinatorial problems such as the N-queens or the
Knapsack problem.

5

1.7 References
[1] Rojas-Galeano, S. (2019). Binary optimisation with an urban pigeon-inspired

swarm algorithm. In: Workshop on Engineering Applications. Springer CCIS Series.
https://link.springer.com/chapter/10.1007/978-3-030-31019-6_17.

[2] Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/.
Center for Connected Learning and Computer-Based Modeling, Northwestern
University, Evanston, IL.

6

https://link.springer.com/chapter/10.1007/978-3-030-31019-6_17
 http://ccl.northwestern.edu/netlogo/

Chapter 2

Installation and execution

2.1 Online version
The easiest way of experimenting with PUPIBinary is by using its online version. The
software is available at the ModellingCommons website. So, you just need to follow
these steps:

1. Open your favourite Internet browser and point it to the following URL:
http://modelingcommons.org/browse/one_model/6400

2. The following web page should appear:

3. From the toolbar, choose the “Run in Netlogo Web” tab:

7

http://modelingcommons.org/browse/one_model/6400

4. A grey area in the middle of the screen is shown. Do “Click to Run Model”:

5. The model main screen will show up:

6. That’s all! Choose the running parameters in the control panel, click SETUP and
then GO! The flock of pigeons will start the search in the genotype space in order
to solve the chosen problem, while the view area will display the phenotype of the
best solution found ever and the monitors and plots will show the performance
indicators of the adaptation process to the corresponding binary cost function.

2.2 Desktop version
The desktop version is recommended if you want to try heavy experimentation, such
as parameter tuning, average behaviour of multiple runs or simulations with large
populations. For this purpose, PUPIBinary runs over the NetLogo desktop simulation
platform [2]. In this case, you need to go through the following steps:

8

1. Download and install the NetLogo desktop software. For this purpose, go to
http://ccl.northwestern.edu/netlogo/, click in “Download NetLogo”
and follow the instructions:

2. Download the PUPIBinary model file from the tool webpage, using the “Export”
button:

A file called Binary Optimisation with Urban Pigeon-inspired Model.nlogo would
be downloaded to your local disk.

3. Run NetLogo on your computer. Choose the menu option File→ Open:

Locate the PUPIBinary .nlogo file that you downloaded previously and open it.

9

http://ccl.northwestern.edu/netlogo/

4. The PUPIBinary main screen will show up:

That’s it! Choose the running parameters in the control panel, click SETUP and
then GO! The flock of pigeons will start the search in the genotype space in order
to solve the chosen problem, while the view area will display the phenotype of the
best solution found ever and the monitors and plots will show the performance
indicators of the adaptation process to the corresponding binary cost function.

10

Chapter 3

Source code

;; ---
;; Binary version of PUPI optimiser
;;
;; A model by Sergio Rojas-Galeano
;; v1.4 Copyright (c) July 2020 The author
;; Correspondance email: srojas@udistrital.edu.co
;; Universidad Distrital Francisco Jose de Caldas, Bogota,

Colombia
;;
;; An extension of Urban Pigeon-inspired Model for Unconstraint

Optimisation
;; v1.16 (2020) by Sergio Rojas-Galeano and Martha Garzon
;; http://modelingcommons.org/browse/one_model/6390
;;
;; This program is free software: you can redistribute it and/or

modify
;; it under the terms of the GNU General Public License (GPLv3)
;; (see license at: https://www.gnu.org/licenses/gpl-3.0.txt)
;;
;; The model is made publicly available in the hope that it will

be useful
;; to modelers, but WITHOUT ANY WARRANTY whatsoever (see license

for details).
;; ---

;; Definition of global variables
globals[
;; PUPI globals
pigeons ; agentset of all pigeons

(walkers+followers)
pupi-leader ; best pigeon in current iteration
pupi-best-solution ; best solution found by PUPI ever
pupi-best-fitness ; fitness of best solution found ever
pupi-best-tick ; tick where best solution was found
pupi-best-time ; runtime where best solution was found
pupi-runtime ; overall algorithm runtime (ms)
pupi-cohesion ; flock cohesion

;; Problem globals

11

true-best-fitness ; the ground-truth fitness of optimum
solution

wave-signal
]

;; PUPI breeds
breed [walkers walker]
breed [followers follower]

;; Pigeon attributes for binary problems
turtles-own [
xcors ; a d-dimensional list of coordinates (i.e "location"

of the pigeon)
xbits ; a binary mapping of the coordinates

(genotype-to-phenotype representation)
fitness ; value of cost function for the pigeon

]

;; Execute one iteration of the optimisation procedure
to go
reset-timer

; ifelse ticks mod 1000 > 800 [
ifelse ticks mod 500 > 400 [

;; PUPI wild search (starvation move)
ask pigeons [walk-move]

][
;; PUPI normal foraging mode
ask pigeons [compute-fitness]
update-leader
ask followers [follow-move]
ask walkers [walk-move]

]
set pupi-runtime pupi-runtime + timer

;; The following steps do not count as runtime; they are
ancilliary to the algorithm

if cohesion? [set pupi-cohesion sum map [bits ->
hamming-distance [xbits] of pupi-leader bits] [xbits] of
followers]

update-display
tick
if (ticks > max-ticks) or ((pupi-best-tick > 0)) [stop]

end

;; Compute fitness of pigeon depending on selected problem
to compute-fitness
gmp
run problem ; call the procedure corresponding to problem

(see benchmarks below)
end

;; Genotype-to-phenotype mapping
to gmp
set xbits map [x -> ifelse-value (x < tau) [0] [1]] xcors ;

apply binarisation according to \tau threshold
end

12

;; Find current leader and update best solution ever
to update-leader
set pupi-leader max-one-of pigeons [fitness]

;; update solution and statistics if the new leader is fitter
than ever

if [fitness] of pupi-leader > pupi-best-fitness [;
maximises by default. Change to "<" to minimise instead

set pupi-best-solution [xbits] of pupi-leader
set pupi-best-fitness [fitness] of pupi-leader

;; verify stopping condition
if [fitness] of pupi-leader = true-best-fitness [

set pupi-best-tick ticks
set pupi-best-time pupi-runtime

]
]

end

;; Move followers towards pigeon leader
to follow-move
let index random dim ; choose a random coordinate to modify
let xi item index xcors
let delta-xi (item index [xcors] of pupi-leader) - (item index

xcors)
set xcors replace-item index xcors ((xi + alpha * delta-xi) +

sigma * random-normal 0 0.1) ;mod 1
end

;; Move walkers around
to walk-move
let index random dim ; choose a random coordinate to modify
let xi item index xcors
set xcors replace-item index xcors ((xi + sigma * random-normal

0 1) mod 1)
end

;; Get ready to go
to setup
clear-all
setup-problem
setup-display
create-walkers pop-size * walkers-rate ;; create walkers

accroding walkers-rate
create-followers pop-size - count walkers ;; create

followers accroding walkers-rate
set pigeons (turtle-set followers walkers) ;; populate

pigeons agentset
ask pigeons [

set xcors n-values dim [random-float 1] ;; set pigeon
initial random location (coordinates)

compute-fitness ;; set pigeon
initial fitness value

hide-turtle ;; no need to show
turtles

13

]
initial-solution
update-leader
update-display
reset-ticks

end

;; Define true optimal cost and other global variables
to setup-problem
set true-best-fitness (ifelse-value

problem = "oneMax" [dim] ; the number of
bits that must be set on

problem = "powSum" [dim * (dim + 1) / 2] ; in a all-ones
bitstring, the sum of n powers is equals to n(n+1)/2

problem = "squareWave" [dim] ; the number of
bits that should be identical to those in the wave signal

)
if problem = "squareWave" [

let root sqrt dim
let index range dim
set wave-signal map [i -> -1 * (2 * int (i / root) - int (2

* i / root))] index
]

end

;; Resize view area according to problem dimension
to setup-display
let side-size sqrt dim
resize-world 0 (side-size - 1) 0 (side-size - 1)
set-patch-size 300 / side-size

end

;; Initialise best solution
to initial-solution
let anyone one-of pigeons ;; choose any pigeon as initial

solution
set pupi-best-solution [xbits] of anyone
set pupi-best-fitness [fitness] of anyone

end

;; Show current best solution on display
to update-display
ask patches [

let index (max-pxcor + 1) * pycor + pxcor ; obtain linear
location of bit corresponding to patch coordinates

set pcolor ifelse-value (item index pupi-best-solution = 0)
[white] [black]

]
end

;; Compute hamming distance between bitstrings
to-report hamming-distance [xbits1 xbits2]
report (length remove true (map [[b1 b2] -> b1 = b2] xbits1

xbits2))
end

14

;;;;;;;; Benchmark problems ;;;;;;;;;

;; oneMax computes the sum of the bits
to oneMax
set fitness (sum xbits)

end

;; powSum computes the sum of power exponents where bits are on
to powSum
let powers (range 1 (dim + 1))
set fitness sum (map [[power bit] -> power * bit] powers

xbits)
end

;; squareWave computes the number of bits identical to those in
the wave-signal of size dim

to squareWave
set fitness sum (map [[wave bit] -> ifelse-value wave = bit

[1][0]] wave-signal xbits)
end

15

16

Chapter 4

Software license

PUPIBinary version 1.4
Copyright c© 2020 Sergio A. Rojas.

This program is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with this
program. If not, you can download it from:

https://www.gnu.org/licenses/gpl-3.0.en.html.

17

https://www.gnu.org/licenses/gpl-3.0.en.html

	Overview
	The optimisation tool
	What is red PUPIBinary?
	How it works
	How to use it
	Other distinctive features
	Try it yourself
	Extending the tool
	References

	Installation and execution
	Online version
	Desktop version

	Source code
	Software license

