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A Cultural Diff usion Model for the Rise and Fall 
of Programming Languages
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abstract

Our interaction with complex computing machines is mediated by programming languages (PLs), which 
constitute one of the major innovations in the evolution of technology. PLs allow flexible, scalable, and 
fast use of hardware and are largely responsible for shaping the history of information technology since 
the rise of computers in the 1950s. The rapid growth and impact of computers were followed closely by 
the development of PLs. As occurs with natural, human languages, PLs have emerged and gone extinct. 
There has been always a diversity of coexisting PLs that compete somewhat while occupying special 
niches. Here we show that the statistical patterns of language adoption, rise, and fall can be accounted for 
by a simple model in which a set of programmers can use several PLs, decide to use existing PLs used by 
other programmers, or decide not to use them. Our results highlight the influence of strong communities 
of practice in the difffusion of PL innovations.

The relevance of evolution as a universal 
framework to understand our biosphere 
is encapsulated in a famous quote by the 

evolutionary biologist Theodosius Dobzhansky: 
“Nothing in biology makes sense except in the light 
of evolution” (Dobzhansky 1973). When we turn our 
attention to cultural change, in particular the devel-
opment of technology, we could ask ourselves what 
role is played by equivalent evolutionary forces. 
Both similarities and diffferences exist between 
natural and technological evolution (Solé et al. 
2013), and moreover, it is often difffĳicult to establish 
the importance of a given innovation and how it 
becomes widespread within a given social context.

Sometimes technological success (or failure) 
can be explained through a process of increasing 
returns, with little connection to rational decisions 
(Arthur 1994). This is the case of some inventions 
that had several alternatives in the market, such 

as the two famous video recording systems, VHS 
and Betamax. They entered the market almost 
simultaneously (Betamax appeared a year before 
VHS) and under similar conditions, yet despite the 
acknowledged advantages of Betamax, VHS eventu-
ally expanded and dominated the video recorder 
market, and Betamax went extinct (Arthur 1994).

How did that happen? How is it possible that 
the more advantageous option goes extinct while 
the less fĳit rises to full domination? The explanation 
comes from the nature of returns in an economic 
system where compatibility largely dominates the 
potential choices made by users and consumers. 
The more users a given technology has, the larger 
the chances that other users will adopt it. A direct 
consequence of this scenario is that social am-
plifĳication leads to competition that necessarily 
ends in the extinction of the initially less popular 
option. Such a scenario can be easily described 
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using nonlinear models where imitation dynamics 
provides the basic rules that drive the expansion 
of each option through populations of users. These 
examples provide a powerful illustration of how 
technology difffuses through society.

Although in most cases little is known about 
the population dynamics of each option and the 
exact numbers of associated users, some available 
data allow us to estimate these quantities for the 
so-called videotape format war between VHS and 
Betamax. We can investigate this interesting il-
lustration using n-grams, that is, strings of written 
words that can be single items (e.g., “war”) or more 
complex structures (e.g., “world war” or “World 
War I”). By using very large digitized databases 
incorporating all words that appeared in vast book 
libraries in diffferent years, it is actually possible 
to obtain a compelling picture of cultural impact 
(Michel et al. 2011).1

Figure 1 shows the outcome of the data analysis 
of the videotape format war, with two specifĳic 
n-grams for “VHS recorder” and “Betamax” as sur-
rogates for the relevant technological innovations, 

which reveal two important trends. Figure 1a shows 
that, after their appearance in the mid-1970s, both 
terms increasingly appear but VHS outperforms 
Betamax over time. The early phase (Figure 1b) 
reveals a remarkable equivalence of both n-grams, 
consistent with the reduced competition that 
should be expected when the process is starting. 
This is a good example of the potential value of 
culturomics data.

This example can also be analyzed using a 
simple model of technological competition based 
on increasing returns. This helps illustrate the 
modeling approach used here to analyze the rise 
and fall of programming languages. Specifĳically, we 
will assume that two options are present in a given 
market and that these are the only ones available: 
VHS wins and Betamax looses versus VHS looses 
and Betamax wins. Additionally, users are driven 
by majority rules: the more users adopt a given 
technology, the higher is the probability that other 
users decide to use it too. We indicate by ρ1 and ρ2 
the fraction of users using each option, and we 
assume a normalization ρ1 + ρ2 = 1.

FIGURE 1. Increasing returns and symmetry 
breaking in technological evolution. (a and 
b) Time series of citations for the terms 
“VHS recorder” (solid line) and “Betamax” 
(dashed line), the two competing videotape 
designs that emerged almost simultaneously 
and became the dominant options in the 
market. Despite their near equivalence 
during the early phase (b), VHS (solid circles) 
eventually dominated the market. (c) Potential 
associated with a simple symmetric model 
of technological competition (see text). 
One unstable state (open circle) and two 
symmetric, stable states (solid circles) are 
accessible. Initial conditions and accidents can 
play a crucial role.
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The population dynamics of this system is 
defĳined by the set of (symmetric) equations
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The fĳirst term in parentheses, (ρi − ρj), stands for the 
relative diffference between the two populations. It 
introduces the sign of the choice made based on 
which is the current dominant option. If ρ1 > ρ2, 
the fĳirst population will grow while the second will 
decrease. The last term, Φ(ρ1, ρ2), is the competition 
function that introduces how the two populations 
interact (Solé 2011).

It is not difffĳicult to see that Φ(ρ) = Σi≠j µρi(1 – 
2ρj), and thus we have, from ρi = 1 − ρj,

 
dpi

dt
=μρ i (2ρ i−1)−μρ i ρ i

i≠ j
∑ (1−2ρ j ),  (3)

which after some algebra gives a cubic equation for 
the dynamics of each population of users:

 
dpi

dt
=Γ(ρ i )=2μ(1−ρ i )(2ρ i−1)ρ i .  (4)

This model has three equilibrium (fĳixed) 
points: ρi = ½, which corresponds to a coexistence 
of identical numbers of users for each option; and 
two alternative states ρi = 1 and ρi = 0, both stable, 
which correspond to the extinction or success of 
the technological alternative.2

This is actually an example of symmetry break-
ing. An alternative, very helpful way of representing 
this phenomenon is to use the so-called potential 
function V(ρi) associated with population dynamics. 
The potential function is closely related to energy 
functions in physics and is defĳined by the relation
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which indicates that the dynamics of ρ “derives” 
from the potential. It can be shown that this po-
tential can be obtained from

 V (ρ i )=− Γ(ρ i )dρ i∫ .  (6)

This function is such that the minima and 
maxima correspond to stable and unstable equi-
librium states, respectively. In our example, the 
resulting potential is a quadratic function

 V (ρ i )=μ(ρ i
4−2ρ i

3+ρ i
2).  (7)

Our potential function shows a standard two-
well shape (Figure 1c). Once an initial fluctuation 
has favored one confĳiguration over the other, the 
amplifĳication of the original fluctuation forces 
a collective decision. If we think of the state of 
the system as a marble rolling down the potential 
landscape, and we start with an initial state where 
both VHS and Betamax are equally represented 
(Figure 1c, open circle) then two possible, symmet-
ric alternatives are equally likely to happen (Figure 
1c, solid circles). If we consider the potential for 
the VHS solution, then either it wins (ρVHS = 1) or 
it loses (ρVHS = 0).

The standard examples of technological in-
novation discussed above are often related to two-
option choices (Betamax vs. VHS, or clockwise vs. 
anticlockwise clocks). But what about the diverse 
nature of multiple innovations that develop over 
time? This is in fact the realistic scenario that 
describes how technology evolves: many difffer-
ent innovations emerge and spread among users. 
This implies a highly complex dynamics, since 
(in principle) multiple parameters and historical 
factors might influence each particular innovation. 
Despite this, and similar to ecological systems com-
posed of many interacting species, some models 
that account for evolution over time with almost no 
assumptions about parameters are highly success-
ful in explaining many relevant laws. As we show 
below, this seems to be the case for one of the most 
important and influential classes of technological 
innovations: programming languages.

The Ecology of Programming 
Languages

Several important innovations have led to the 
emergence of major technological domains. If 
we look to the second half of the 20th century, it 
would be reasonable to adjust Dobzhansky’s quote: 
“Nothing makes sense in information technology, 
unless under the light of programming languages.” 
Programming languages (PLs) appeared shortly 
after one of the fĳirst, largest computers was built 
in 1946: the Electronic Numerical Integrator and 
Computer, or ENIAC (Burks and Burks 1981), which 
was used to address a broad variety of numerical 
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integration problems. Among many other scien-
tists and engineers involved with ENIAC was the 
genius mathematician John von Neumann, who 
immediately became interested in fĳinding a general 
framework for a more advanced, programmable 
computer, called the Electronic Discrete Variable 
Automatic Computer, or EDVAC (von Neumann 
1945).

Thanks to von Neumann’s work, computers 
became programmable not by changes in the 
hardware but by a stored program. The idea that a 
program could be used by diffferent computers to 
execute a given task was revolutionary. Along with 
the evolution of hardware, a new class of “invisible” 
technology started to develop—software marked 
the rise of information technology and provided the 
interface for communication between machines 
and humans. Its enormous impact was beyond any 
expectations. Software was rapidly adopted as the 
essential part of computation, enabling humans 

to easily interact with machines, and triggered the 
emergence of communities of users sharing similar 
PLs (starting with FORTRAN). As a consequence, 
users invented new PLs that addressed problems 
in a variety of ways while improving access for 
an increasingly larger range of users. At fĳirst the 
spread of PLs was limited, but it quickly gained 
momentum as computers became smaller and 
cheaper. As soon as personal computers became 
a reality in the 1980s, multiple PLs appeared and 
were used by large communities of programmers, 
with PLs difffusing through them.

Figure 2A shows the result of analyzing the 
terms “programming language” and “computer 
hardware.” Shortly after their emergence in the 
1940s they both rarely appear, but just before 1960 
they start to grow rapidly, then climb at a given 
rate, accelerate around 1980, and decline after 
the 1990s. The “programming language” n-gram 
experiences faster growth and decline compared 

FIGURE 2. Cultural diff usion of information 
technologies. (A) Time series of n-gram 
abundance associated with the terms 
“programming language” (solid line) and 
“computer hardware” (dashed line). The curves 
display qualitative similar behavior, possibly 
mirroring the coevolution of hardware and 
so� ware. A sudden increase of the abundance 
of “programming language” takes place 
around 1980 (inset). A bump (*) signals the 
Y2K (year 2000) problem, which aff ected many 
programming languages. The shadowed region 
shows a decay of “programming language” 
popularity with the widespread adoption of 
Internet technologies. (B) Sustained growth of 
the number of US personal computers (×100) 
since 1980 (data source: World Bank 2012). The 
arrows point to specifi c innovations in the history 
of information technology.
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with “computer hardware.” These time series sug-
gest two relevant things. The fĳirst is the coupling 
of PLs and hardware over the growth phase of the 
system, including the change in growth rate that 
took place in the 1980s. This coupling is consistent 
with a coevolutionary dynamics between hardware 
and software that existed throughout the history 
of information technology. We know that a large 
portion of the increasing impact of PLs relates 
to their growing number and to their widespread 
importance. Afterward, the rapid decline of PLs 
suggests that they no longer were as central. 
Instead, globalization and increasing returns as-
sociated with a limited, worldwide adoption of 
a limited number of computing devices shrank 
their numbers (see Figure 2B). In this context, 
PLs are similar to the video recording inventions 
discussed above.

As we show below, a simple model of PL evolu-
tion based on cultural difffusion can explain this 
and other statistical patterns. PLs follow the same 
basic pattern of expansion as other technological 
artifacts. In fact, because PLs have a special status 
(they are neither hardware nor simple programs), 
their adoption is an important decision that is 
particularly sensitive to compatibility constraints. 
An additional component also needs to be consid-
ered to understand the dynamics of PLs over time: 
multilingualism. Very often, programmers know 
and use several PLs simultaneously. As occurs with 
human languages, the spread and success of PLs 
is influenced by the presence of large numbers of 
users keen on using them and limited by a fĳinite 
repertoire of PLs that can be adopted and usefully 
applied by individuals.

Frequency Distributions

Although most of the early story of PLs is lost, 
particularly the numbers of users, the more recent 
record provides an interesting illustration of how 
populations of PL users expand or shrink over time. 
Using these data, usually measuring the impact 
of extant PLs, we capture the popularity of each 
PL, as well as underlying social, economic, and 
technological factors. The most recent histori-
cal data shows that some PLs are on the rise, for 
example, Objective-C used in iOS applications, 
which is becoming more popular thanks to the 

commercial success of the iPhone; meanwhile, 
others are decaying, such as Perl (see below). Yet 
others have lower impact but keep steady levels of 
popularity, perhaps because of their importance 
for specifĳic communities (e.g., Javascript). Does any 
law or universal behavior drive popularity of PLs?

Ranking programming popularity is a very 
difffĳicult task. The measurement of popularity is 
afffected by common problems similar to most 
market studies. Popular measures estimate PL 
impact as a weighted combination of the reported 
number of hits reported by search engines. Several 
measures have been published, such as the TIOBE 
programming community index (http://www.
tiobe.com), the PYPL Popularity of Programming 
Language index (http://pypl.github.io), and the 
Transparent Language Popularity Index analyzed 
here (http://lang-index.sourceforge.net). These 
measures capture diffferent economic and social 
factors afffecting the popularity of specifĳic PLs 
reflected on the Internet. For example, Figure 3 
shows the frequency-rank distribution of PL popu-
larity, ordering all the measured PLs from the most 
abundant (rank r = 1) to the least frequent. In this 
way we obtain a decreasing distribution that ap-
pears highly skewed. This distribution provides a 
snapshot of the popularity changes experienced 
by PLs.

Our distribution is consistent with a discrete 
generalized beta distribution (DGBD) (Martinez-
Mekler et al. 2009) that well fĳits frequency-rank 
plots of PL popularity:

 f (r)= A
ra (r+1−r)b ,  (8)

where r is the PL rank, R is the maximum rank 
value, A is a normalization constant, and a and b 
are two fĳitting exponents. Martinez-Mekler et al. 
(2009) presented a growth probabilistic model that 
generates data complying with this distribution. 
The model represents a competition between two 
processes: permanence (expansion) and change 
(point mutations). This model provides an intuitive 
interpretation for the DGBD parameters: when 
a > b, point mutations are rare and expansion is 
favored; a < b corresponds to the opposite situation, 
with prevalent disorder. However, their model does 
not predict the values observed here: (a, b) = (1.44, 
0.46) (see Figure 3).

The DGBD pattern shown in Figure 3 provides 
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a statistical, global view of PLs at a given point in 
time (July 2013). It reveals an overabundance of 
rare PLs and the presence of a limited number 
of highly abundant PLs. This means that rarity 
is the rule: most extant PLs are used by a small 
fraction of users. On the other hand, this pattern 
is described by a continuous distribution; that is, it 
is characterized by a long tail and does not display 
a two-regime pattern between common and rare 
PLs. This type of scaling behavior is known to occur 
in a vast number of systems displaying power laws 
(Solé and Goodwin 2001). It reveals the presence 
of amplifĳication phenomena that often can be 
explained by very simple rules (Ball 2004). More 
important, scaling laws are also well known in the 
distribution of human languages (Solé et al. 2010).

Human languages exhibit enormous diversity, 
but they also display the skewed distribution of 
abundances shown by PLs. This pattern reveals 
again the uneven use of tongues in our planet, 
largely dominated by a small number of languages, 
with an enormous number of rare ones defĳining 
the tail of the distribution. The rarity of human 
languages reveals an important trait: many extant 
languages will face extinction in the next decades. 
Languages, as with species, disappear once they 
are no longer propagated. Despite their diffferences 
(Solé et al. 2010), both languages and species need 
to confront the conflict associated with survival 
under competition for resources. For both human 
languages and PLs, “resources” means users. Once a 
tongue is no longer spoken, we consider it extinct. 
Similarly, if no more programs are written in a given 
PL, it also is extinct.

The next section presents a simple model of PL 
evolution that allows us to recover the statistical 
distribution of PLs at a given step characterized by 
high diversity, as well as the time evolution of the 
total number of PLs.

Discrete Diff usion Model of 
Programming Languages

This section examines cellular automata that 
allow us to simulate how cultural difffusion takes 
place in programmer communities. (A Netlogo 
implementation of this model is freely available 
at http://svalver.github.io/Proglang/pldifffusion.
html.) Our approach does not focus on specifĳic 

details but, rather, considers the way that any PL is 
likely to emerge, spread, and disappear. Modeling 
PL evolution requires a number of simplifĳications 
and strong assumptions. PL evolution is marked 
by changes over time as PLs rise and fall. We will 
assume that users are completely identical, thus 
ignoring the presence of diffferent types of commu-
nities. We will also ignore the fact that PLs and the 
machines they interact with them coevolve. These 
assumptions might seem too strong, but they allow 
simple models to be built and, very often, succeed. 
Despite such oversimplifĳication, minimal models 
that describe the evolution and statistical patterns 
of both languages and species in ecosystems are 
able to explain observed regularities.

Perhaps the best example is the so-called 
neutral theory of ecology (Hubbell 2001; Solé et 
al. 2004; Alonso et al. 2006), which assumes that 
all species within a given habitat are identical in all 
their birth and death characteristics. The seemingly 
universal pattern of rank abundance of species in 
a given ecosystem is obtained in a robust manner. 
In this context, neutral models can also explain 
the distribution of cultural variants (Bentley et 
al. 2004).

As with systems mentioned above, we can 
reproduce the empirical frequency-rank distri-
bution of PL popularity with a small number of 

FIGURE 3. Log-log plot of 
frequency rank, ordered by 
descending popularity, for 
programming languages 
(PLs) listed in the Transparent 
Language Popularity Index 
(http://lang-index.sourceforge.
net). This distribution follows 
the discrete generalized beta 
distribution, with parameters 
(a, b) = (1.44, 0.46). The arrows 
point to the rank position of well-
known PLs that diff er greatly in 
nature and duration.



230 ■ Valverde and Solé

assumptions (see below). The success of these 
approximations is grounded in the universal dy-
namics exhibited by systems allowing the amplifĳi-
cation of fluctuations. Despite the roles played by 
memory, space, hierarchies, social dynamics, or 
demographic parameters, most of these properties 
have little impact on the statistical patterns of orga-
nization. First, the popularity of PLs depends only 
on the presence or absence of other PLs. Popular 
PLs are more frequently adopted than rare ones, 
which are more likely to be forgotten and disappear. 
Second, we simulate a homogeneous population 
of software developers that can adopt several PLs 
simultaneously and have a reasonable understand-
ing of PL features, including design principles and 
implementation details.

The model consists of a static population of 
programmers located on an L × L lattice and a fĳixed 
pool of PLs indexed by a set

 Σ = {0, . . . , µ} (9)

(0 denotes the null language). Similar to Axelrod’s 
(1997) model of cultural dissemination, the pro-
gramming culture of a developer is described by a 
vector that holds a certain number of PLs. The state 
of the programmer located at site (i, j) is

 sij=(sij1 ,sij2 ,…,sijM )∈ΣM ,  (10)

where sij
k ∊ Σ indicates the index of the kth PL 

known by the programmer. Every developer can 
adopt up to M diffferent PLs, that is, for all 1 ≤ k ≠ l 
≤ M. In addition, we will count how many program-
mers know the rth PL:

 Np(r)=
i=1

L

Σ
j=1

L

Σ δ
k=1

M

∑ (sijk ,r),  (11)

where δ(x, y) = 1 if x = y, and 0 otherwise. At the 
beginning of the simulation, which corresponds to 
the year 1958, there are no PLs, and thus sij

→ = 0→ for 
all programmers. At every time step t, choose one 
random site (i, j) of the lattice and apply rules for 
innovation, adoption, and forgetting, as follows.

Innovation Rule
This rule is associated with the “discovery” by a 
programmer of a previously unused PL. It thus 
acts as an external input into the system, similar 
to the immigration of an individual into a given 

ecosystem (a similar rule was proposed in Bentley 
et al. 2004). Randomly choose the PL index r ∊ Σ 
and 1 ≤ k ≤ M, and set sij

k (t + 1) = r with probability 
α provided that the rth PL does not belong to sij

→; 
that is, it is unknown to the programmer located 
at site (i, j).

Adoption Rule
This is the rule that introduces the difffusion of PLs 
in our model. It is a contact-like process, where two 
programmers that interact with each other (here 
simply by being neighbors in our two-dimensional 
lattice) allows an “infection” to occur. The Moore 
neighborhood is defĳined by Ω(i, j) = {(u, v) : |u – i| ≤ 
1, |v – j| ≤ 1}. For each programmer, we choose one 
random neighbor site (u, v) ∊ Ω(i, j) and set sij

q = suv
r 

with probability

 P[suvr → sijq]=η
Np(suvr )

Z
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
,  (12)

where Z is the normalization constant

 Z=
i=1

L

Σ
j=1

L

Σ θ
k=1

M

∑ (sijk ),

1 ≤ q ≤ M is a memory slot, and η > 0 is the adoption 
rate.

Forgetting Rule
For diffferent reasons, users might eventually dis-
card a given PL from their list of potential PLs. This 
rule corresponds to the extinction of an individual 
of a given species but difffers in a fundamental way: 
the user will retain other PLs. Randomly choose 1 ≤ 
r ≤ M, and set sr

ij (t + 1) = 0 with probability

 P[sijr→0]=δ 1−
Np(suvr )

Z
⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥
,  (13)

where Z is a normalization constant and δ > 0 is 
the forgetting rule.

Our model assumes that PLs are discovered 
at a constant, small rate α (innovation rule). Very 
popular PLs, with Np(sij

r)/Z ≈ 1, tend to be adopted 
more frequently (adoption rule), while rare PLs are 
easier to forget and abandon by the community 
(forgetting rule).

The model consistently reproduces the pat-
terns displayed by PLs, including the ups and 
downs of abundances that somewhat map into the 
“popularity” of PLs. Common PLs have smoother 
time fluctuations, whereas more rapid fluctuations 



A Cultural Diff usion Model for Programming Languages ■ 231

are associated with rare PLs that often end in ex-
tinction. Figure 4A displays four spatial snapshots 
of our cellular automaton model corresponding to 
the PL time series. In the fĳirst stages of the simula-
tion (t = 2), relatively small patches indicate the 
difffusion of PLs among limited numbers of users. 
However, as time proceeds, larger patches can be 
observed resulting from the successful propagation 
of some PLs and their combinations. This process is 
also visualized in Figure 4C, where the population 
size for some of the most abundant PLs is plotted 
against time. We can see that all these PLs start by 
growing, but some eventually decline and become 
extinct, whereas others succeed.

The model exhibits a marked increase in PL 
diversity, and it also reveals the presence of scaling 
laws. Figure 5 shows how our model predicts the 
frequency-rank distribution observed for PLs. We 
have used an evolutionary algorithm to obtain the 
best-fĳitting parameters α = 0.495987, η = 0.905577, 
and δ = 0.000195. The maximum PL diversity is µ 
= 120 because of the limitations of the data set. 
Other sources (e.g., Wikipedia) report many more 
PLs (Valverde and Solé 2015). Still, our experiments 
show that the behavior of our model is robust to 
a wide range of µ, M, and L values. Here, we have 

fĳixed programmer capacity M = 3 and lattice size L 
= 32. As observed with the popularity measures for 
extant PLs, at a given step a large number of PLs are 
represented by a small number of users, whereas a 
limited set of PLs are adopted by a majority.

These results reveal that the fate of our PL 
system, despite the transient richness that matches 
the previously presented scaling laws, is to reduce 
the number of PLs as the spread rule dominates. 
Inevitably, a low diversity of PLs will be observed 
in the future. The three snapshots and frequency 

FIGURE 4. (A) Four snapshots of the cellular automaton model 
of programming language (PL) spread on a two-dimensional 
lattice. Each site represents a programmer, who can use/
store up to M = 3 PLs. The RGB color scheme encodes the 
multiple (up to M = 3) languages adopted by a programmer. 
Diff erent colors represent combinations of diff erent PLs, 
which captures the PL population diversity. (B) Time series 
of the number of diff erent PLs present in the population. The 
number grows very quickly at the beginning (t = 2), where 
most programmers only know one (A, dark red) or zero (A, 
black) PLs. High diversity of PLs plateaus at t ≈ 50, which is 
represented in A by diff erent shades of red and yellow sites 
(at t = 60). With time, M = 3 dominant PLs emerges, and a 
signifi cant loss of diversity follows. According to this model, 
we are now located in the decay phase (arrow at t = 60 as in 
A). (C) Times series of number of adopters for fi ve individual 
PLs (represented by diff erent symbols), including three that 
survive at the end of the diff usion process. Individual behavior 
in our model is typical of competition dynamics in other 
technological systems (see Figures 1 and 2).

FIGURE 5. Frequency-rank 
distribution in programming 
language (PL) popularity: 
log-linear plot of PLs ordered 
by observed popularity (open 
circles; data from Figure 3) 
and as predicted by our model 
(solid circles). Our model fi ts 
the observed distribution and 
predicts the existence of spatially 
heterogeneous communities 
(color inset; see Figure 4A). 
Parameters: α = 0.495987, η = 
0.905577, δ = 0.000195, μ = 120, 
M = 3, L = 32.
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distributions displayed in Figure 6 indicate what 
can be expected under our assumptions. Starting 
from a more or less homogeneous distribution 
(other conditions can be used), after a transient 
period the emergence of power-law behavior of 
a virtual world sustains many PLs. Eventually, the 
same process concludes with a stark impoverish-
ment of our PL set, with just a handful of surviving 
PLs.

The model thus makes a strong prediction: 
in the future, as globalized communication and 
increasing returns accelerate, few PLs will survive. 
In this context, many examples exist of once suc-
cessful and widespread PLs that become extinct. 
As with many spoken languages, we are constantly 
facing this pattern with PLs. A recent case is pro-
vided by Perl, a PL invented in 1987 that became the 
essential web-writing PL during the early days of 
the Internet. Despite its great impact, Perl is fading 
toward extinction. As pointed out by Doug Barry 
(2014): “For programmers who already know Perl, 
the consensus seems to be that it’s still a useful skill 
to have. However, for programmers coming of age 
in the IT industry right now, taking the trouble to 
learn a difffĳicult language . . . is akin to learning Latin 
in a world increasingly fĳilled with other, newer ver-
sions of Latin like French, Spanish, and Italian. Perl 
may not ‘go extinct’ . . . , but it will mostly become 
an anachronism.” The comparison here between 

PLs and spoken languages here is interesting—in 
several ways they are similar: they both face the 
impact of competition among coexisting options 
and the law of increasing returns. However, as 
discussed below, PLs are more afffected by these 
amplifĳication phenomena, and their fate and future 
diversity reduction are likely to happen in a much 
shorter time scale than spoken languages.

Discussion

People’s lives are increasingly dependent on the 
correct working of software, because as wireless 
networks proliferate, many portable devices be-
come interconnected. The increasing popularity 
of the personal computer has been followed by a 
consistent trend toward more complex software 
systems. In that respect, the expansion of PLs over 
decades of change shares some traits with human 
languages and difffers in some important aspects. 
Diffferent human languages arise, coexist, and fall, 
but they are all characterized the essentially same 
complexity provided by syntax. The difffusion of 
human languages correlates directly with the num-
ber of speakers, but they are all essentially equal 
in structure. PLs, in contrast, can be classifĳied in 
two major categories, procedural and declarative, 
and because of their distinct goals and underlying 

FIGURE 6. Time sequence of programming language (PL) diff usion using our model. At the beginning (t = 4; le� ) we have PL coexistence without constraints, which 
corresponds to an almost fl at rank-frequency distribution. Dark colors indicate that programmers have free memory slots. At t ≈ 60 (middle), we recover the observed 
frequency-rank distribution because diff erent PLs are competing for programmer infection. This corresponds to a heterogeneous spatial structure. At longer time 
scales (t = 250; right) the system stabilizes in a homogeneous confi guration with a few (M = 3) dominant PLs (many sites display the same color). Indeed, limited 
memory slots and feedback eff ects have destroyed the initial PL diversity. Parameters: α = 0.495987, η = 0.905577, δ = 0.000195, μ = 120, M = 3, L = 32. We have 
assumed that signifi cant communities have at least 20 members.
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hardware to be executed, they can display diffferent 
levels of complexity (Scott 2009).

PLs are one of the main drivers of successful 
software development. They are a means both 
to tell computers how to do useful work and to 
exchange ideas and algorithms between people. 
The evolution of PLs is linked to both the software 
environment (hardware) and socioeconomic 
factors (and the exponential decline in hardware 
costs). Computers have transitioned from costly, 
restricted machines to inexpensive, mass-market 
products. This transition has been associated with 
deep changes in PL design. The fĳirst PLs were 
specifĳically designed for expensive machines and 
not for human beings. However, rapid advances 
in hardware technology called for more efffĳicient 
ways of dealing with the (increasing) complexity of 
computer programming. In this context, designers 
of high-level PLs are much more concerned with 
language expressiveness and simplicity than with 
hardware efffĳiciency. That is, cognitive factors and 
the social dynamics of PL adoption appear to be 
much more important than hardware aspects for 
the future evolution of PLs.

Here we have discussed a very simple model of 
cultural difffusion capable of reproducing the em-
pirical rank distribution of PL popularity. Since our 
globalized world and, in particular, the ecosystem 
formed by PL users are fĳinite, and since the spread 
of innovations is very fast, candidate PLs rapidly 
experience a strong selection process. Users will 
adopt a PL that it is not too difffĳicult to learn, is 
shared by other users (the more the better), and is 
compatible with existing hardware requirements. 
Because increasing returns play a very important 
role here, and because homogenization is growing 
with globalization, PLs are destined to be less and 
less diverse. Compared with a spoken language, 
where several factors, such a special status, might 
favor persistence despite competitive forces (Solé 
et al. 2010), the social components of PLs are not 
as crucial to the programmer. Such lack of special 
status and rapidly changing hardware might con-
tribute, indeed accelerate, this decline in diversity.

Future work should extend this approach to 
understand the efffect of population heterogeneity 
and specifĳic features of PLs. Our model assumes 
that all PLs are equally learnable and that adop-
tion rate depends only on PL popularity. However, 
expert developers can learn new PLs faster than 

can novices. Computer programming, like reading, 
involves a number of diffferent, interrelated skills. 
Some PLs have been designed for teaching (e.g., 
BASIC), while others are purposely complicated 
(so-called esoteric languages, like Ook!). An impor-
tant (and largely unexplored) question is how the 
cognitive demands of learning (Pea and Kurland 
1984) afffect the dynamics of PL adoption. In this 
context, extensions of modeling approaches like 
the ones discussed here will help us to explore these 
questions and, more generally, help us understand 
the societal impact of information technologies.
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notes  

 1. This defĳines a new fĳield, “culturomics,” which is a power-
ful quantitative way to measure cultural impact. The 
culturomics approach allows us to glimpse the role 
played by given concepts or artifacts using numbers 
of citations as surrogates for their relative importance 
in a given time window.

 2. In general, the three equilibrium points are obtained 
from the condition dρi/dt = 0 or, equivalently, from F(ρi*) 
= 0. The type of stability is defĳined by the sign of λ = 
∂Γ(ρi*)/∂ρi, to be calculated for each fĳixed point. If λ < 0 
the point is stable, meaning that the system will return 
to the point if a small perturbation is applied. If λ > 0 
it is unstable; a small perturbation from this point is 
amplifĳied, and the system abandons it.
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