
1ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Barcelona, Spain.

*Correspondence to: Sergi Valverde, ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Dr.
Aiguader 88, Planta 4, D-491, Barcelona E-08003, Spain. E-mail: sergi.valverde@upf.edu.

KEY WORDS: cultural evolution, multilingualism, diffusion, programming languages, software.

Human Biology, Summer 2015, v. 87, no. 3, pp. 224–234. Copyright © 2016 Wayne State University Press, Detroit, Michigan 48201

A Cultural Diff usion Model for the Rise and Fall
of Programming Languages

Sergi Valverde1* and Ricard V. Solé1

abstract

Our interaction with complex computing machines is mediated by programming languages (PLs), which
constitute one of the major innovations in the evolution of technology. PLs allow flexible, scalable, and
fast use of hardware and are largely responsible for shaping the history of information technology since
the rise of computers in the 1950s. The rapid growth and impact of computers were followed closely by
the development of PLs. As occurs with natural, human languages, PLs have emerged and gone extinct.
There has been always a diversity of coexisting PLs that compete somewhat while occupying special
niches. Here we show that the statistical patterns of language adoption, rise, and fall can be accounted for
by a simple model in which a set of programmers can use several PLs, decide to use existing PLs used by
other programmers, or decide not to use them. Our results highlight the influence of strong communities
of practice in the difffusion of PL innovations.

The relevance of evolution as a universal
framework to understand our biosphere
is encapsulated in a famous quote by the

evolutionary biologist Theodosius Dobzhansky:
“Nothing in biology makes sense except in the light
of evolution” (Dobzhansky 1973). When we turn our
attention to cultural change, in particular the devel-
opment of technology, we could ask ourselves what
role is played by equivalent evolutionary forces.
Both similarities and diffferences exist between
natural and technological evolution (Solé et al.
2013), and moreover, it is often difffĳicult to establish
the importance of a given innovation and how it
becomes widespread within a given social context.

Sometimes technological success (or failure)
can be explained through a process of increasing
returns, with little connection to rational decisions
(Arthur 1994). This is the case of some inventions
that had several alternatives in the market, such

as the two famous video recording systems, VHS
and Betamax. They entered the market almost
simultaneously (Betamax appeared a year before
VHS) and under similar conditions, yet despite the
acknowledged advantages of Betamax, VHS eventu-
ally expanded and dominated the video recorder
market, and Betamax went extinct (Arthur 1994).

How did that happen? How is it possible that
the more advantageous option goes extinct while
the less fĳit rises to full domination? The explanation
comes from the nature of returns in an economic
system where compatibility largely dominates the
potential choices made by users and consumers.
The more users a given technology has, the larger
the chances that other users will adopt it. A direct
consequence of this scenario is that social am-
plifĳication leads to competition that necessarily
ends in the extinction of the initially less popular
option. Such a scenario can be easily described

A Cultural Diff usion Model for Programming Languages ■ 225

using nonlinear models where imitation dynamics
provides the basic rules that drive the expansion
of each option through populations of users. These
examples provide a powerful illustration of how
technology difffuses through society.

Although in most cases little is known about
the population dynamics of each option and the
exact numbers of associated users, some available
data allow us to estimate these quantities for the
so-called videotape format war between VHS and
Betamax. We can investigate this interesting il-
lustration using n-grams, that is, strings of written
words that can be single items (e.g., “war”) or more
complex structures (e.g., “world war” or “World
War I”). By using very large digitized databases
incorporating all words that appeared in vast book
libraries in diffferent years, it is actually possible
to obtain a compelling picture of cultural impact
(Michel et al. 2011).1

Figure 1 shows the outcome of the data analysis
of the videotape format war, with two specifĳic
n-grams for “VHS recorder” and “Betamax” as sur-
rogates for the relevant technological innovations,

which reveal two important trends. Figure 1a shows
that, after their appearance in the mid-1970s, both
terms increasingly appear but VHS outperforms
Betamax over time. The early phase (Figure 1b)
reveals a remarkable equivalence of both n-grams,
consistent with the reduced competition that
should be expected when the process is starting.
This is a good example of the potential value of
culturomics data.

This example can also be analyzed using a
simple model of technological competition based
on increasing returns. This helps illustrate the
modeling approach used here to analyze the rise
and fall of programming languages. Specifĳically, we
will assume that two options are present in a given
market and that these are the only ones available:
VHS wins and Betamax looses versus VHS looses
and Betamax wins. Additionally, users are driven
by majority rules: the more users adopt a given
technology, the higher is the probability that other
users decide to use it too. We indicate by ρ1 and ρ2
the fraction of users using each option, and we
assume a normalization ρ1 + ρ2 = 1.

FIGURE 1. Increasing returns and symmetry
breaking in technological evolution. (a and
b) Time series of citations for the terms
“VHS recorder” (solid line) and “Betamax”
(dashed line), the two competing videotape
designs that emerged almost simultaneously
and became the dominant options in the
market. Despite their near equivalence
during the early phase (b), VHS (solid circles)
eventually dominated the market. (c) Potential
associated with a simple symmetric model
of technological competition (see text).
One unstable state (open circle) and two
symmetric, stable states (solid circles) are
accessible. Initial conditions and accidents can
play a crucial role.

226 ■ Valverde and Solé

The population dynamics of this system is
defĳined by the set of (symmetric) equations

 dp
1

dt
=μρ

1
(ρ

1
−ρ

2
)−ρ

1
Φ(ρ

1
,ρ

2
), (1)

 dp

2

dt
=μρ

2
(ρ

2
−ρ

1
)−ρ

2
Φ(ρ

1
,ρ

2
). (2)

The fĳirst term in parentheses, (ρi − ρj), stands for the
relative diffference between the two populations. It
introduces the sign of the choice made based on
which is the current dominant option. If ρ1 > ρ2,
the fĳirst population will grow while the second will
decrease. The last term, Φ(ρ1, ρ2), is the competition
function that introduces how the two populations
interact (Solé 2011).

It is not difffĳicult to see that Φ(ρ) = Σi≠j µρi(1 –
2ρj), and thus we have, from ρi = 1 − ρj,

dpi

dt
=μρ i (2ρ i−1)−μρ i ρ i

i≠ j
∑ (1−2ρ j), (3)

which after some algebra gives a cubic equation for
the dynamics of each population of users:

dpi

dt
=Γ(ρ i)=2μ(1−ρ i)(2ρ i−1)ρ i . (4)

This model has three equilibrium (fĳixed)
points: ρi = ½, which corresponds to a coexistence
of identical numbers of users for each option; and
two alternative states ρi = 1 and ρi = 0, both stable,
which correspond to the extinction or success of
the technological alternative.2

This is actually an example of symmetry break-
ing. An alternative, very helpful way of representing
this phenomenon is to use the so-called potential
function V(ρi) associated with population dynamics.
The potential function is closely related to energy
functions in physics and is defĳined by the relation

dρ i

dt
=−

∂V (ρ i)
∂ρ i

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
, (5)

which indicates that the dynamics of ρ “derives”
from the potential. It can be shown that this po-
tential can be obtained from

 V (ρ i)=− Γ(ρ i)dρ i∫ . (6)

This function is such that the minima and
maxima correspond to stable and unstable equi-
librium states, respectively. In our example, the
resulting potential is a quadratic function

 V (ρ i)=μ(ρ i
4−2ρ i

3+ρ i
2). (7)

Our potential function shows a standard two-
well shape (Figure 1c). Once an initial fluctuation
has favored one confĳiguration over the other, the
amplifĳication of the original fluctuation forces
a collective decision. If we think of the state of
the system as a marble rolling down the potential
landscape, and we start with an initial state where
both VHS and Betamax are equally represented
(Figure 1c, open circle) then two possible, symmet-
ric alternatives are equally likely to happen (Figure
1c, solid circles). If we consider the potential for
the VHS solution, then either it wins (ρVHS = 1) or
it loses (ρVHS = 0).

The standard examples of technological in-
novation discussed above are often related to two-
option choices (Betamax vs. VHS, or clockwise vs.
anticlockwise clocks). But what about the diverse
nature of multiple innovations that develop over
time? This is in fact the realistic scenario that
describes how technology evolves: many difffer-
ent innovations emerge and spread among users.
This implies a highly complex dynamics, since
(in principle) multiple parameters and historical
factors might influence each particular innovation.
Despite this, and similar to ecological systems com-
posed of many interacting species, some models
that account for evolution over time with almost no
assumptions about parameters are highly success-
ful in explaining many relevant laws. As we show
below, this seems to be the case for one of the most
important and influential classes of technological
innovations: programming languages.

The Ecology of Programming
Languages

Several important innovations have led to the
emergence of major technological domains. If
we look to the second half of the 20th century, it
would be reasonable to adjust Dobzhansky’s quote:
“Nothing makes sense in information technology,
unless under the light of programming languages.”
Programming languages (PLs) appeared shortly
after one of the fĳirst, largest computers was built
in 1946: the Electronic Numerical Integrator and
Computer, or ENIAC (Burks and Burks 1981), which
was used to address a broad variety of numerical

A Cultural Diff usion Model for Programming Languages ■ 227

integration problems. Among many other scien-
tists and engineers involved with ENIAC was the
genius mathematician John von Neumann, who
immediately became interested in fĳinding a general
framework for a more advanced, programmable
computer, called the Electronic Discrete Variable
Automatic Computer, or EDVAC (von Neumann
1945).

Thanks to von Neumann’s work, computers
became programmable not by changes in the
hardware but by a stored program. The idea that a
program could be used by diffferent computers to
execute a given task was revolutionary. Along with
the evolution of hardware, a new class of “invisible”
technology started to develop—software marked
the rise of information technology and provided the
interface for communication between machines
and humans. Its enormous impact was beyond any
expectations. Software was rapidly adopted as the
essential part of computation, enabling humans

to easily interact with machines, and triggered the
emergence of communities of users sharing similar
PLs (starting with FORTRAN). As a consequence,
users invented new PLs that addressed problems
in a variety of ways while improving access for
an increasingly larger range of users. At fĳirst the
spread of PLs was limited, but it quickly gained
momentum as computers became smaller and
cheaper. As soon as personal computers became
a reality in the 1980s, multiple PLs appeared and
were used by large communities of programmers,
with PLs difffusing through them.

Figure 2A shows the result of analyzing the
terms “programming language” and “computer
hardware.” Shortly after their emergence in the
1940s they both rarely appear, but just before 1960
they start to grow rapidly, then climb at a given
rate, accelerate around 1980, and decline after
the 1990s. The “programming language” n-gram
experiences faster growth and decline compared

FIGURE 2. Cultural diff usion of information
technologies. (A) Time series of n-gram
abundance associated with the terms
“programming language” (solid line) and
“computer hardware” (dashed line). The curves
display qualitative similar behavior, possibly
mirroring the coevolution of hardware and
so� ware. A sudden increase of the abundance
of “programming language” takes place
around 1980 (inset). A bump (*) signals the
Y2K (year 2000) problem, which aff ected many
programming languages. The shadowed region
shows a decay of “programming language”
popularity with the widespread adoption of
Internet technologies. (B) Sustained growth of
the number of US personal computers (×100)
since 1980 (data source: World Bank 2012). The
arrows point to specifi c innovations in the history
of information technology.

228 ■ Valverde and Solé

with “computer hardware.” These time series sug-
gest two relevant things. The fĳirst is the coupling
of PLs and hardware over the growth phase of the
system, including the change in growth rate that
took place in the 1980s. This coupling is consistent
with a coevolutionary dynamics between hardware
and software that existed throughout the history
of information technology. We know that a large
portion of the increasing impact of PLs relates
to their growing number and to their widespread
importance. Afterward, the rapid decline of PLs
suggests that they no longer were as central.
Instead, globalization and increasing returns as-
sociated with a limited, worldwide adoption of
a limited number of computing devices shrank
their numbers (see Figure 2B). In this context,
PLs are similar to the video recording inventions
discussed above.

As we show below, a simple model of PL evolu-
tion based on cultural difffusion can explain this
and other statistical patterns. PLs follow the same
basic pattern of expansion as other technological
artifacts. In fact, because PLs have a special status
(they are neither hardware nor simple programs),
their adoption is an important decision that is
particularly sensitive to compatibility constraints.
An additional component also needs to be consid-
ered to understand the dynamics of PLs over time:
multilingualism. Very often, programmers know
and use several PLs simultaneously. As occurs with
human languages, the spread and success of PLs
is influenced by the presence of large numbers of
users keen on using them and limited by a fĳinite
repertoire of PLs that can be adopted and usefully
applied by individuals.

Frequency Distributions

Although most of the early story of PLs is lost,
particularly the numbers of users, the more recent
record provides an interesting illustration of how
populations of PL users expand or shrink over time.
Using these data, usually measuring the impact
of extant PLs, we capture the popularity of each
PL, as well as underlying social, economic, and
technological factors. The most recent histori-
cal data shows that some PLs are on the rise, for
example, Objective-C used in iOS applications,
which is becoming more popular thanks to the

commercial success of the iPhone; meanwhile,
others are decaying, such as Perl (see below). Yet
others have lower impact but keep steady levels of
popularity, perhaps because of their importance
for specifĳic communities (e.g., Javascript). Does any
law or universal behavior drive popularity of PLs?

Ranking programming popularity is a very
difffĳicult task. The measurement of popularity is
afffected by common problems similar to most
market studies. Popular measures estimate PL
impact as a weighted combination of the reported
number of hits reported by search engines. Several
measures have been published, such as the TIOBE
programming community index (http://www.
tiobe.com), the PYPL Popularity of Programming
Language index (http://pypl.github.io), and the
Transparent Language Popularity Index analyzed
here (http://lang-index.sourceforge.net). These
measures capture diffferent economic and social
factors afffecting the popularity of specifĳic PLs
reflected on the Internet. For example, Figure 3
shows the frequency-rank distribution of PL popu-
larity, ordering all the measured PLs from the most
abundant (rank r = 1) to the least frequent. In this
way we obtain a decreasing distribution that ap-
pears highly skewed. This distribution provides a
snapshot of the popularity changes experienced
by PLs.

Our distribution is consistent with a discrete
generalized beta distribution (DGBD) (Martinez-
Mekler et al. 2009) that well fĳits frequency-rank
plots of PL popularity:

 f (r)= A
ra (r+1−r)b , (8)

where r is the PL rank, R is the maximum rank
value, A is a normalization constant, and a and b
are two fĳitting exponents. Martinez-Mekler et al.
(2009) presented a growth probabilistic model that
generates data complying with this distribution.
The model represents a competition between two
processes: permanence (expansion) and change
(point mutations). This model provides an intuitive
interpretation for the DGBD parameters: when
a > b, point mutations are rare and expansion is
favored; a < b corresponds to the opposite situation,
with prevalent disorder. However, their model does
not predict the values observed here: (a, b) = (1.44,
0.46) (see Figure 3).

The DGBD pattern shown in Figure 3 provides

A Cultural Diff usion Model for Programming Languages ■ 229

a statistical, global view of PLs at a given point in
time (July 2013). It reveals an overabundance of
rare PLs and the presence of a limited number
of highly abundant PLs. This means that rarity
is the rule: most extant PLs are used by a small
fraction of users. On the other hand, this pattern
is described by a continuous distribution; that is, it
is characterized by a long tail and does not display
a two-regime pattern between common and rare
PLs. This type of scaling behavior is known to occur
in a vast number of systems displaying power laws
(Solé and Goodwin 2001). It reveals the presence
of amplifĳication phenomena that often can be
explained by very simple rules (Ball 2004). More
important, scaling laws are also well known in the
distribution of human languages (Solé et al. 2010).

Human languages exhibit enormous diversity,
but they also display the skewed distribution of
abundances shown by PLs. This pattern reveals
again the uneven use of tongues in our planet,
largely dominated by a small number of languages,
with an enormous number of rare ones defĳining
the tail of the distribution. The rarity of human
languages reveals an important trait: many extant
languages will face extinction in the next decades.
Languages, as with species, disappear once they
are no longer propagated. Despite their diffferences
(Solé et al. 2010), both languages and species need
to confront the conflict associated with survival
under competition for resources. For both human
languages and PLs, “resources” means users. Once a
tongue is no longer spoken, we consider it extinct.
Similarly, if no more programs are written in a given
PL, it also is extinct.

The next section presents a simple model of PL
evolution that allows us to recover the statistical
distribution of PLs at a given step characterized by
high diversity, as well as the time evolution of the
total number of PLs.

Discrete Diff usion Model of
Programming Languages

This section examines cellular automata that
allow us to simulate how cultural difffusion takes
place in programmer communities. (A Netlogo
implementation of this model is freely available
at http://svalver.github.io/Proglang/pldifffusion.
html.) Our approach does not focus on specifĳic

details but, rather, considers the way that any PL is
likely to emerge, spread, and disappear. Modeling
PL evolution requires a number of simplifĳications
and strong assumptions. PL evolution is marked
by changes over time as PLs rise and fall. We will
assume that users are completely identical, thus
ignoring the presence of diffferent types of commu-
nities. We will also ignore the fact that PLs and the
machines they interact with them coevolve. These
assumptions might seem too strong, but they allow
simple models to be built and, very often, succeed.
Despite such oversimplifĳication, minimal models
that describe the evolution and statistical patterns
of both languages and species in ecosystems are
able to explain observed regularities.

Perhaps the best example is the so-called
neutral theory of ecology (Hubbell 2001; Solé et
al. 2004; Alonso et al. 2006), which assumes that
all species within a given habitat are identical in all
their birth and death characteristics. The seemingly
universal pattern of rank abundance of species in
a given ecosystem is obtained in a robust manner.
In this context, neutral models can also explain
the distribution of cultural variants (Bentley et
al. 2004).

As with systems mentioned above, we can
reproduce the empirical frequency-rank distri-
bution of PL popularity with a small number of

FIGURE 3. Log-log plot of
frequency rank, ordered by
descending popularity, for
programming languages
(PLs) listed in the Transparent
Language Popularity Index
(http://lang-index.sourceforge.
net). This distribution follows
the discrete generalized beta
distribution, with parameters
(a, b) = (1.44, 0.46). The arrows
point to the rank position of well-
known PLs that diff er greatly in
nature and duration.

230 ■ Valverde and Solé

assumptions (see below). The success of these
approximations is grounded in the universal dy-
namics exhibited by systems allowing the amplifĳi-
cation of fluctuations. Despite the roles played by
memory, space, hierarchies, social dynamics, or
demographic parameters, most of these properties
have little impact on the statistical patterns of orga-
nization. First, the popularity of PLs depends only
on the presence or absence of other PLs. Popular
PLs are more frequently adopted than rare ones,
which are more likely to be forgotten and disappear.
Second, we simulate a homogeneous population
of software developers that can adopt several PLs
simultaneously and have a reasonable understand-
ing of PL features, including design principles and
implementation details.

The model consists of a static population of
programmers located on an L × L lattice and a fĳixed
pool of PLs indexed by a set

 Σ = {0, . . . , µ} (9)

(0 denotes the null language). Similar to Axelrod’s
(1997) model of cultural dissemination, the pro-
gramming culture of a developer is described by a
vector that holds a certain number of PLs. The state
of the programmer located at site (i, j) is

 sij=(sij1 ,sij2 ,…,sijM)∈ΣM , (10)

where sij
k ∊ Σ indicates the index of the kth PL

known by the programmer. Every developer can
adopt up to M diffferent PLs, that is, for all 1 ≤ k ≠ l
≤ M. In addition, we will count how many program-
mers know the rth PL:

 Np(r)=
i=1

L

Σ
j=1

L

Σ δ
k=1

M

∑ (sijk ,r), (11)

where δ(x, y) = 1 if x = y, and 0 otherwise. At the
beginning of the simulation, which corresponds to
the year 1958, there are no PLs, and thus sij

→ = 0→ for
all programmers. At every time step t, choose one
random site (i, j) of the lattice and apply rules for
innovation, adoption, and forgetting, as follows.

Innovation Rule
This rule is associated with the “discovery” by a
programmer of a previously unused PL. It thus
acts as an external input into the system, similar
to the immigration of an individual into a given

ecosystem (a similar rule was proposed in Bentley
et al. 2004). Randomly choose the PL index r ∊ Σ
and 1 ≤ k ≤ M, and set sij

k (t + 1) = r with probability
α provided that the rth PL does not belong to sij

→;
that is, it is unknown to the programmer located
at site (i, j).

Adoption Rule
This is the rule that introduces the difffusion of PLs
in our model. It is a contact-like process, where two
programmers that interact with each other (here
simply by being neighbors in our two-dimensional
lattice) allows an “infection” to occur. The Moore
neighborhood is defĳined by Ω(i, j) = {(u, v) : |u – i| ≤
1, |v – j| ≤ 1}. For each programmer, we choose one
random neighbor site (u, v) ∊ Ω(i, j) and set sij

q = suv
r

with probability

 P[suvr → sijq]=η
Np(suvr)

Z
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
, (12)

where Z is the normalization constant

 Z=
i=1

L

Σ
j=1

L

Σ θ
k=1

M

∑ (sijk),

1 ≤ q ≤ M is a memory slot, and η > 0 is the adoption
rate.

Forgetting Rule
For diffferent reasons, users might eventually dis-
card a given PL from their list of potential PLs. This
rule corresponds to the extinction of an individual
of a given species but difffers in a fundamental way:
the user will retain other PLs. Randomly choose 1 ≤
r ≤ M, and set sr

ij (t + 1) = 0 with probability

 P[sijr→0]=δ 1−
Np(suvr)

Z
⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥
, (13)

where Z is a normalization constant and δ > 0 is
the forgetting rule.

Our model assumes that PLs are discovered
at a constant, small rate α (innovation rule). Very
popular PLs, with Np(sij

r)/Z ≈ 1, tend to be adopted
more frequently (adoption rule), while rare PLs are
easier to forget and abandon by the community
(forgetting rule).

The model consistently reproduces the pat-
terns displayed by PLs, including the ups and
downs of abundances that somewhat map into the
“popularity” of PLs. Common PLs have smoother
time fluctuations, whereas more rapid fluctuations

A Cultural Diff usion Model for Programming Languages ■ 231

are associated with rare PLs that often end in ex-
tinction. Figure 4A displays four spatial snapshots
of our cellular automaton model corresponding to
the PL time series. In the fĳirst stages of the simula-
tion (t = 2), relatively small patches indicate the
difffusion of PLs among limited numbers of users.
However, as time proceeds, larger patches can be
observed resulting from the successful propagation
of some PLs and their combinations. This process is
also visualized in Figure 4C, where the population
size for some of the most abundant PLs is plotted
against time. We can see that all these PLs start by
growing, but some eventually decline and become
extinct, whereas others succeed.

The model exhibits a marked increase in PL
diversity, and it also reveals the presence of scaling
laws. Figure 5 shows how our model predicts the
frequency-rank distribution observed for PLs. We
have used an evolutionary algorithm to obtain the
best-fĳitting parameters α = 0.495987, η = 0.905577,
and δ = 0.000195. The maximum PL diversity is µ
= 120 because of the limitations of the data set.
Other sources (e.g., Wikipedia) report many more
PLs (Valverde and Solé 2015). Still, our experiments
show that the behavior of our model is robust to
a wide range of µ, M, and L values. Here, we have

fĳixed programmer capacity M = 3 and lattice size L
= 32. As observed with the popularity measures for
extant PLs, at a given step a large number of PLs are
represented by a small number of users, whereas a
limited set of PLs are adopted by a majority.

These results reveal that the fate of our PL
system, despite the transient richness that matches
the previously presented scaling laws, is to reduce
the number of PLs as the spread rule dominates.
Inevitably, a low diversity of PLs will be observed
in the future. The three snapshots and frequency

FIGURE 4. (A) Four snapshots of the cellular automaton model
of programming language (PL) spread on a two-dimensional
lattice. Each site represents a programmer, who can use/
store up to M = 3 PLs. The RGB color scheme encodes the
multiple (up to M = 3) languages adopted by a programmer.
Diff erent colors represent combinations of diff erent PLs,
which captures the PL population diversity. (B) Time series
of the number of diff erent PLs present in the population. The
number grows very quickly at the beginning (t = 2), where
most programmers only know one (A, dark red) or zero (A,
black) PLs. High diversity of PLs plateaus at t ≈ 50, which is
represented in A by diff erent shades of red and yellow sites
(at t = 60). With time, M = 3 dominant PLs emerges, and a
signifi cant loss of diversity follows. According to this model,
we are now located in the decay phase (arrow at t = 60 as in
A). (C) Times series of number of adopters for fi ve individual
PLs (represented by diff erent symbols), including three that
survive at the end of the diff usion process. Individual behavior
in our model is typical of competition dynamics in other
technological systems (see Figures 1 and 2).

FIGURE 5. Frequency-rank
distribution in programming
language (PL) popularity:
log-linear plot of PLs ordered
by observed popularity (open
circles; data from Figure 3)
and as predicted by our model
(solid circles). Our model fi ts
the observed distribution and
predicts the existence of spatially
heterogeneous communities
(color inset; see Figure 4A).
Parameters: α = 0.495987, η =
0.905577, δ = 0.000195, μ = 120,
M = 3, L = 32.

232 ■ Valverde and Solé

distributions displayed in Figure 6 indicate what
can be expected under our assumptions. Starting
from a more or less homogeneous distribution
(other conditions can be used), after a transient
period the emergence of power-law behavior of
a virtual world sustains many PLs. Eventually, the
same process concludes with a stark impoverish-
ment of our PL set, with just a handful of surviving
PLs.

The model thus makes a strong prediction:
in the future, as globalized communication and
increasing returns accelerate, few PLs will survive.
In this context, many examples exist of once suc-
cessful and widespread PLs that become extinct.
As with many spoken languages, we are constantly
facing this pattern with PLs. A recent case is pro-
vided by Perl, a PL invented in 1987 that became the
essential web-writing PL during the early days of
the Internet. Despite its great impact, Perl is fading
toward extinction. As pointed out by Doug Barry
(2014): “For programmers who already know Perl,
the consensus seems to be that it’s still a useful skill
to have. However, for programmers coming of age
in the IT industry right now, taking the trouble to
learn a difffĳicult language . . . is akin to learning Latin
in a world increasingly fĳilled with other, newer ver-
sions of Latin like French, Spanish, and Italian. Perl
may not ‘go extinct’ . . . , but it will mostly become
an anachronism.” The comparison here between

PLs and spoken languages here is interesting—in
several ways they are similar: they both face the
impact of competition among coexisting options
and the law of increasing returns. However, as
discussed below, PLs are more afffected by these
amplifĳication phenomena, and their fate and future
diversity reduction are likely to happen in a much
shorter time scale than spoken languages.

Discussion

People’s lives are increasingly dependent on the
correct working of software, because as wireless
networks proliferate, many portable devices be-
come interconnected. The increasing popularity
of the personal computer has been followed by a
consistent trend toward more complex software
systems. In that respect, the expansion of PLs over
decades of change shares some traits with human
languages and difffers in some important aspects.
Diffferent human languages arise, coexist, and fall,
but they are all characterized the essentially same
complexity provided by syntax. The difffusion of
human languages correlates directly with the num-
ber of speakers, but they are all essentially equal
in structure. PLs, in contrast, can be classifĳied in
two major categories, procedural and declarative,
and because of their distinct goals and underlying

FIGURE 6. Time sequence of programming language (PL) diff usion using our model. At the beginning (t = 4; le�) we have PL coexistence without constraints, which
corresponds to an almost fl at rank-frequency distribution. Dark colors indicate that programmers have free memory slots. At t ≈ 60 (middle), we recover the observed
frequency-rank distribution because diff erent PLs are competing for programmer infection. This corresponds to a heterogeneous spatial structure. At longer time
scales (t = 250; right) the system stabilizes in a homogeneous confi guration with a few (M = 3) dominant PLs (many sites display the same color). Indeed, limited
memory slots and feedback eff ects have destroyed the initial PL diversity. Parameters: α = 0.495987, η = 0.905577, δ = 0.000195, μ = 120, M = 3, L = 32. We have
assumed that signifi cant communities have at least 20 members.

A Cultural Diff usion Model for Programming Languages ■ 233

hardware to be executed, they can display diffferent
levels of complexity (Scott 2009).

PLs are one of the main drivers of successful
software development. They are a means both
to tell computers how to do useful work and to
exchange ideas and algorithms between people.
The evolution of PLs is linked to both the software
environment (hardware) and socioeconomic
factors (and the exponential decline in hardware
costs). Computers have transitioned from costly,
restricted machines to inexpensive, mass-market
products. This transition has been associated with
deep changes in PL design. The fĳirst PLs were
specifĳically designed for expensive machines and
not for human beings. However, rapid advances
in hardware technology called for more efffĳicient
ways of dealing with the (increasing) complexity of
computer programming. In this context, designers
of high-level PLs are much more concerned with
language expressiveness and simplicity than with
hardware efffĳiciency. That is, cognitive factors and
the social dynamics of PL adoption appear to be
much more important than hardware aspects for
the future evolution of PLs.

Here we have discussed a very simple model of
cultural difffusion capable of reproducing the em-
pirical rank distribution of PL popularity. Since our
globalized world and, in particular, the ecosystem
formed by PL users are fĳinite, and since the spread
of innovations is very fast, candidate PLs rapidly
experience a strong selection process. Users will
adopt a PL that it is not too difffĳicult to learn, is
shared by other users (the more the better), and is
compatible with existing hardware requirements.
Because increasing returns play a very important
role here, and because homogenization is growing
with globalization, PLs are destined to be less and
less diverse. Compared with a spoken language,
where several factors, such a special status, might
favor persistence despite competitive forces (Solé
et al. 2010), the social components of PLs are not
as crucial to the programmer. Such lack of special
status and rapidly changing hardware might con-
tribute, indeed accelerate, this decline in diversity.

Future work should extend this approach to
understand the efffect of population heterogeneity
and specifĳic features of PLs. Our model assumes
that all PLs are equally learnable and that adop-
tion rate depends only on PL popularity. However,
expert developers can learn new PLs faster than

can novices. Computer programming, like reading,
involves a number of diffferent, interrelated skills.
Some PLs have been designed for teaching (e.g.,
BASIC), while others are purposely complicated
(so-called esoteric languages, like Ook!). An impor-
tant (and largely unexplored) question is how the
cognitive demands of learning (Pea and Kurland
1984) afffect the dynamics of PL adoption. In this
context, extensions of modeling approaches like
the ones discussed here will help us to explore these
questions and, more generally, help us understand
the societal impact of information technologies.

acknowledgments

 We thank Mark Watney and the members of the Complex
Systems Lab for useful discussions. This work has been
supported by Fundación Botín, the Spanish Ministry of
Economy and Competitiveness (Grants FIS2013-44674-P
to S.V.) and FEDER and by the Santa Fe Institute.

notes

 1. This defĳines a new fĳield, “culturomics,” which is a power-
ful quantitative way to measure cultural impact. The
culturomics approach allows us to glimpse the role
played by given concepts or artifacts using numbers
of citations as surrogates for their relative importance
in a given time window.

 2. In general, the three equilibrium points are obtained
from the condition dρi/dt = 0 or, equivalently, from F(ρi*)
= 0. The type of stability is defĳined by the sign of λ =
∂Γ(ρi*)/∂ρi, to be calculated for each fĳixed point. If λ < 0
the point is stable, meaning that the system will return
to the point if a small perturbation is applied. If λ > 0
it is unstable; a small perturbation from this point is
amplifĳied, and the system abandons it.

Received 10 February 2015; revision accepted for
publication 4 November 2015.

literature cited

Alonso, D., R. S. Etienne, and A. J. McKane. 2006. The merits
of neutral theory. Trends Ecol. Evol. 21:451–457.

Arthur, B. 1994. Increasing Returns and Path Dependence in
the Economy. Ann Arbor: Michigan University Press.

Axelrod, R. 1997. The dissemination of culture: A model with
local convergence and global polarization. J. Conflict
Resolut. 41:203–226.

234 ■ Valverde and Solé

Ball, P. 2004. Critical Mass: How One Thing Leads to Another.
New York: Farrar, Straus, and Giroux.

Barry, D. 2014. The slow, stubborn extinction of the Perl
programming language. Tech of the Town (blog), 7
August, http://resolvit.com/Editor/NewsandBlogs/
NewsandBlogs-FullArticle/tabid/427/ArticleId/701/
language/en-US/The-Slow-Stubborn-Extinction-of-the-
Perl-Programming-Language.aspx.

Bentley, R. A., M. W. Hahn, and S. J. Shennan. 2004. Random
drift and culture change. Proc. Biol. Sci. 271:1,443–1,450.

Burks, A. W., and A. R. Burks. 1981. The ENIAC: First general-
purpose electronic computer. IEEE Ann. Hist. Comput.
3:310–389.

Dobzhansky, T. 1973. Nothing in biology makes sense except
in the light of evolution. Am. Biol. Teacher 35:125–129.

Hubbell, S. P. 2001. The Unifĳied Neutral Theory of Biodiversity
and Biogeography. Princeton, NJ: Princeton University
Press.

Martinez-Mekler, G., R. A. Martínez, M. B. del Ro et al. 2009.
Universality of rank-ordering distributions in the arts
and sciences PLoS One 4:e4791.

Michel, J.-B., Y. K. Shen, A. P. Aiden et al. 2011. Quantitative
analysis of culture using millions of digitized books.
Science 331:176–182.

Pea, R. D., and D. M. Kurland. 1984. On the cognitive efffects

of learning computer programming. New Ideas Psychol.
2:137–168.

Scott, M. L. 2009. Programming Language Pragmatics. 3rd
ed. Burlington, MA: Morgan Kaufmann.

Solé, R. V. 2011. Phase Transitions. Princeton, NJ: Princeton
University Press.

Solé, R. V., D. Alonso, and J. Saldaña. 2004. Habitat fragmen-
tation and biodiversity collapse in neutral communi-
ties. Ecol. Complex. 1:65–75.

Solé, R. V., B. Corominas-Murtra, and J. Fortuny. 2010. Di-
versity, competition, extinction: The econophysics of
language change. J. R. Soc. Interface 7:1,647–1,664.

Solé, R. V., and B. Goodwin. 2001. Signs of Life: How Complex-
ity Pervades Biology. New York: Basic Books.

Solé, R. V., S. Valverde, M. Rosas-Casals et al. 2013. The evolu-
tionary ecology of technological innovation. Complexity
18:15–27.

Valverde, S., and R. V. Solé. 2015. Punctuated equilibrium in
the large-scale evolution of programming languages. J.
R. Soc. Interface 12:20150249.

von Neumann, J. 1945. First draft of a report on the EDVAC.
Reprinted in IEEE Ann. Hist. Comput. 15:27–75, 1993.

World Bank. 2012. World DataBank, http://databank.world-
bank.org.

