Projet_simulateur_20250801
Do you have questions or comments about this model? Ask them here! (You'll first need to log in.)
WHAT IS IT?
This simulator was designed from research by the Public Opinion Research Group.
It models how opinions on political or social issues spread inside a population, using a multi-agent system.
Agents carry: - an opinion (−1 to +1), - a prevalence (strength/salience), - an influence (capacity to convince), - and a set of social links.
The model studies the co-evolution of: 1. Individual convictions, 2. Salience of issues (prevalence), 3. Influence capacities, 4. Social network structure.
HOW TO USE IT
Basic operation
- Choose the population size in
pop
. - Press Setup to generate agents and their initial links (and set a black background).
- Press Go to run or pause the simulation.
Agents in 3D: - X axis: opinion (–1 = left, +1 = right), - Y axis: prevalence (0–99), - Z axis: influence (0–1).
Links (ties) are coloured: - Green: both agents share the same sign (homophily), - Gray: opposite signs (bridges).
Their thickness is set by the slider linktick
.
Use the show-links?
switch to show/hide ties.
Social network dynamics
Links are continuously created or removed depending on opinion distance:
link-removal-threshold
— maximum opinion gap above which a link can be deleted,link-formation-threshold
— maximum gap to allow forming new ties,prob
— probability applied to link removal/creation,linksdown
— max number of links removed per tick,linksup
— max number of links created per tick.
Bridges between opposing camps may also form with the
bridge-prob
slider (see below).
Loading data
Use in_file to import a text file (space-separated):
iteration prevalence opinion influence
choice_iter
selects which iteration to load.
This lets you replay or branch from a saved configuration.
Meta-influencers
Create highly influential agents (influence = 1):
- Choose the scope with
meta-influencers-selection
(All, Left, Right). - Set their proportion via
meta-influencers
. - Restrict eligibility with
prev-low
/prev-high
. - Control extra ties with
meta-links
,meta-min
,meta-max
. - If
vary-influence
is ON, an agent’s influence grows when it moderates and decreases when it radicalizes. meta-ok
toggles their participation; an Influent button can add them at runtime.
Prevalence & influence dynamics
modulation-prevalence
+rate-modulation
: adjust prevalence as opinions shift.rate-infl
: speed at which influence increases/decreases after adoption.noise
: random opinion drift (external shocks).polarization-factor
: discounts adoption when opinions are far apart.
External events
Perturb the system via events:
- Define opinion bounds (
low_meme
,high_meme
) and prevalence bounds (low-prev
,high-prev
). - Set
event_size
(opinion shift) andprev_change
(prevalence change). - Trigger:
- Manually with the event button,
- Automatically with
auto_event
ON andtick-event
set.
- Manually with the event button,
meme_set
can restrict the event to agents defined at start as left or right.
NEW & ENHANCED FEATURES
- 3D view: agents plotted by opinion (X), prevalence (Y), influence (Z).
- Dynamic links: created/removed as opinions evolve.
- Link colouring:
- Green → same-signed opinions,
- Gray → opposite signs (including meta-influencers).
- Meta-influencer links with limits (
meta-min
→meta-max
). - Prevalence modulation and noise built into adoption rules.
- CSV export per trial: logs statistics at every tick.
- Toggle
show-links?
to display/hide connections. - Background set to black automatically at setup.
Group impact parameters
These sliders control how the alignment of an agent’s neighbours modulates adoption probability.
group-impact-weight
Strength of group influence.
Range: 0
(none) → 1
(full).
group-impact-alpha
Non-linearity of the effect: [ f(g) = g^{\alpha} ]
- α = 1 → linear,
- α < 1 → concave (even a small aligned minority has strong impact),
- α > 1 → convex (only a large aligned majority matters).
Combined scaling of base probability (P): [ P' = P \times \big[(1-w) + w \times (g^{\alpha})\big] ]
Additional parameters: prevalence-weight, adoption-floor, bridge-prob
prevalence-weight
— Weight of prevalence in adoption
Controls how much the prevalence gap between a target and its neighbour affects adoption probability.
- Low (0–0.3): prevalence has little impact.
- Medium (0.4–0.6): balanced with other factors.
- High (0.7–1.0): strong prevalence advantage can override sign difference.
A high value increases the chance of inversions when neighbours have large prevalence gaps.
adoption-floor
— Minimum adoption probability
Sets a floor for adoption, even if opinion distance or influence would make adoption nearly impossible.
- Keeps dynamics alive in highly segregated networks.
- Values above
0.03
allow occasional adoption despite large opinion gaps.
bridge-prob
— Probability of cross-camp links
Introduces random bridge links between agents of opposite signs, bypassing the formation threshold.
- Low values keep camps separated.
- Moderate values (0.05–0.2) encourage occasional cross-polarity ties.
- High (>0.3) mixes camps heavily.
Bridges increase exposure to opposite opinions, fostering sign reversals.
Quick reference table
| Slider | Role | Effect on links | Effect on inversions |
|--------------------|-----------------------------|------------------------------------|---------------------|
| prevalence-weight
| Adoption probability | — | Higher if neighbour’s prevalence is large |
| adoption-floor
| Adoption probability floor | — | Allows rare adoption across gaps |
| bridge-prob
| Network formation (bridges) | Adds cross-polarity links | More exposure → more reversals |
USER INTERFACE CONTROLS
General commands
- Setup — initialize agents & network
- Go — run/pause
- in_file — load agent file
- auto_event — schedule events at
tick-event
refresh
/cumulative
— control graph refresh & stat accumulation
Population & iterations
pop
, nb_try
, max_iter
, threshold
, tick-event
External events
event
, On_to_left
, meme_set
, event_size
, prev_change
Meta-influencers
meta-influencers
, meta-influencers-selection
, meta-links
, meta-min
, meta-max
, prev-low
, prev-high
, vary-influence
, meta-ok
Opinion & prevalence
rate-infl
, modulation-prevalence
, rate-modulation
, noise
, polarization-factor
Social network
prob
, linksdown
, linksup
, link-removal-threshold
, link-formation-threshold
Group impact
group-impact-weight
, group-impact-alpha
, group-k
, group-impact-mode
(all / k-nearest)
Advanced sliders
prevalence-weight
, adoption-floor
, bridge-prob
Links & display
show-links?
, linktick
Colours: green = same sign, gray = opposite.
Monitors & graph
- Monitors: % left/right, medians (opinion, prevalence, influence), inversions, interactions, fractal dimension, link stats.
- Graph: tracks proportions and variables over time.
THINGS TO NOTICE
- How opinions converge or polarize based on prevalence, influence, and network evolution.
- The role of meta-influencers and neighbour alignment in adoption.
- Link colours: green for homophily, gray for cross-camp ties.
- Adjusting
prevalence-weight
,adoption-floor
, andbridge-prob
helps control the frequency of opinion reversals.
NETLOGO FEATURES
- 3D visualization of agents & links.
- Export results via
file
or CSV.
CREDITS AND REFERENCES
- Original concept: Public Opinion Research Group
- NetLogo implementation & enhancements: Pierre-Alain Cotnoir (2023–2025)
- AI-assisted design: GPT-4 & GPT-5
- Email: pacotnoir@gmail.com ```
Veux-tu que je l’insère directement dans le fichier .nlogo3d
que tu utilises, ou préfères-tu le copier/coller toi-même dans l’onglet Info ?
Comments and Questions
extensions [sound nw] ;; For using sound and Network package globals [ min-prevalence max-prevalence meta-influencers-droit meta-influencers-gauche iter change total inversion try major fractale ordonnee abcisse profondeur list_data file-in in_data repet_data links-dead links-create meta-agents meta-create ;; === CSV export === csv-export ;; bool: activer/désactiver l’export CSV par essai (widget UI: switch) csv-basename ;; string: préfixe fichier CSV (widget UI: input), ex: "run" csv-file ;; nom du fichier CSV de l’essai courant csv-open? ;; bool: fichier CSV ouvert ? ;; === Paramètres d’inversion / ponts (peuvent être des sliders UI) === ;prevalence-weight ;; >= 0 ; amplification du rôle de Δprégnance ;;adoption-floor ;; [0..1] ; plancher minimal pour la pénalité de polarisation ;;bridge-prob ;; [0..1] ; probabilité de créer un lien-pont (opinion éloignée) ] turtles-own [ opinion ;; [-1, 1] prevalence ;; [min-prevalence, max-prevalence] agent-type ;; "Right side" | "Left side" influence ;; [0, 1] opinion-previous influence-previous ;; Coordonnées 3D propres à chaque agent x3d y3d z3d ] ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; SETUP ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to setup clear-all set repet_data false set iter 0 set min-prevalence 0 set max-prevalence 99 set-default-shape turtles "person" set try 1 set major 0 set links-dead 0 set links-create 0 set meta-create 0 set meta-agents 0 set change 0 set total 0 set inversion 0 set fractale 0 if vary-influence = true [ set meta-links meta-min ] ;; === Defaults CSV si widgets pas encore ajoutés === if not is-boolean? csv-export [ set csv-export false ] if (not is-string? csv-basename) or (csv-basename = "") [ set csv-basename "run" ] set csv-open? false ;; === Defaults IMPACT DE GROUPE (si widgets absents) === if (not is-string? group-impact-mode) [ set group-impact-mode "all" ] ;; "all" | "k-nearest" if (not is-number? group-k) [ set group-k 10 ] if (not is-number? group-impact-weight) [ set group-impact-weight 0.5 ] ;; 0..1 if (not is-number? group-impact-alpha) [ set group-impact-alpha 1.0 ] ;; >=0.1 ;; === Default show-links? si widget absent === if not is-boolean? show-links? [ set show-links? false ] ;; === Defaults inversions/ponts (si pas de sliders) === if (not is-number? prevalence-weight) [ set prevalence-weight 1.5 ] ;; amplification Δprégnance if (not is-number? adoption-floor) [ set adoption-floor 0.02 ] ;; plancher pénalité polarisation if (not is-number? bridge-prob) [ set bridge-prob 0.10 ] ;; probabilité de créer un "pont" set-background-black create rapport end to create ;; Créer les agents Right side create-turtles pop / 2 [ set agent-type "Right side" set opinion random-float 1 ;; (0,1) set color blue set prevalence random-float (opinion * 100) set influence random-float 1 set opinion-previous opinion set influence-previous influence update-3d self ] ;; Créer les agents Left side create-turtles pop / 2 [ set agent-type "Left side" set opinion (random-float 1 - 1) ;; (-1,0) set color red set prevalence random-float (abs opinion * 100) set influence random-float 1 set opinion-previous opinion set influence-previous influence update-3d self ] ;; Création des méta-influenceurs (selon vos réglages UI) influenceurs reset-ticks ;; Initialisation réseau via vos règles (créera des liens si conditions réunies) set total 0 set change 0 update-networks ;; Colorer/afficher les liens dès l’initialisation recolor-links apply-link-visibility end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; SORTIES / RAPPORT ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to rapport ;; titles for Statistics or Values inside compute-statistics if output = "Statistics" [ output-print (word "Try ; " "Iter ; " "Opinion global ; " "Opinion right side ; " "Opinion left side ; " "Prevalence right side ; " "Prevalence left side ; " "Influence right side ; " "Influence left side ; " "Left % ; " "Right % ; " "Links-Remove ; " "Links-Create ; " "Inversion % ; " "change ; " "total ; " "fractale") ] if output = "Values" [ output-print (word "Try ; " "Ticks ; " "Agents ; " "Prevalence ; " "Opinion ; " "Influence ; " "meme droit") ] if output = "File" [ ask turtles [ let pre prevalence let mem opinion let infl influence let ti ticks output-print (word ti " " pre " " mem " " infl) ] ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; META-INFLUENCEURS ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to influenceurs ;; All if meta-influencers-selection = "All" [ let k round (count turtles * meta-influencers) if k > 0 [ ask n-of k turtles [ if (prevalence > prev-low and prevalence <= prev-high) [ set influence 1 set color yellow set meta-agents meta-agents + 1 ] ] ] ] ;; Right side if meta-influencers-selection = "Right side" [ set meta-influencers-droit round (count turtles * meta-influencers) let candidates turtles with [opinion > 0] let k min list meta-influencers-droit count candidates if k > 0 [ ask n-of k candidates [ if (prevalence > prev-low and prevalence <= prev-high) [ set influence 1 set color yellow set meta-agents meta-agents + 1 ] ] ] ] ;; Left side if meta-influencers-selection = "Left side" [ set meta-influencers-gauche round (count turtles * meta-influencers) let candidates turtles with [opinion < 0] let k min list meta-influencers-gauche count candidates if k > 0 [ ask n-of k candidates [ if (prevalence > prev-low and prevalence <= prev-high) [ set influence 1 set color yellow set meta-agents meta-agents + 1 ] ] ] ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; BOUCLE PRINCIPALE ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to go ifelse (iter < max_iter) [ set iter iter + 1 set meta-create 0 ;; plafond de création de liens autour des méta-influenceurs par tick ;; Ouvrir le CSV au premier tick de l’essai if (iter = 1 and csv-export and not csv-open?) [ csv-begin ] if auto_event = true [ if (tick-event = iter) [ event ] ] if meta-ok = true [ meta ] update-opinions if network = true [ update-networks ] recolor-links apply-link-visibility ;; montrer/cacher les liens selon show-links? if output = "Statistics" [ let avg-opinion mean [opinion] of turtles let positive-opinion safe-median (turtles with [opinion >= 0]) "opinion" let negative-opinion safe-median (turtles with [opinion < 0]) "opinion" let positive-prevalence (safe-median (turtles with [opinion >= 0]) "prevalence") / 100 let negative-prevalence (safe-median (turtles with [opinion < 0]) "prevalence") / 100 let positive-influence safe-median (turtles with [opinion >= 0]) "influence" let negative-influence safe-median (turtles with [opinion < 0]) "influence" let Left% (count turtles with [opinion < 0]) / (pop / 100) let Right% (count turtles with [opinion >= 0]) / (pop / 100) let ti iter output-print (word try " ; " ti " ; " avg-opinion " ; " positive-opinion " ; " negative-opinion " ; " positive-prevalence " ; " negative-prevalence " ; " positive-influence " ; " negative-influence " ; " Left% " ; " Right% " ; " links-dead " ; " links-Create " ; " inversion " ; " change " ; " total " ; " fractale) ] tick ;; “Fractale” via changement de base sûr if (change > 1 and total > 1) [ set fractale (ln total) / (ln change) ] if (cumulative = false) [ set change 0 set total 0 ] colorer ;; rafraîchir le graphique if (refresh = true) [ if ticks > 200 [ reset-ticks clear-plot ] ] if threshold <= (count turtles with [opinion > 0]) / (pop / 100) [ set major major + 1 ] ;; Écrire une ligne CSV par tick if csv-export [ csv-row ] ] [ ifelse (try < nb_try) [ ;; Fin d’essai: fermer le CSV de l’essai courant if csv-export [ csv-end ] ;; réinitialisation pour l’essai suivant set try try + 1 set major 0 clear-turtles clear-plot set change 0 set total 0 set fractale 0 set meta-links meta-min set iter 0 set links-create 0 set links-dead 0 set meta-create 0 set min-prevalence 0 set max-prevalence 99 ifelse (repet_data = true) [ data ] [ create set meta-links meta-min ] ] [ ;; Fin de toutes les répétitions: fermer CSV si encore ouvert if csv-export [ csv-end ] sound:play-note "Tubular Bells" 60 64 1 stop ] ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; MISE À JOUR DES OPINIONS (intègre l'effet de groupe + correctifs) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to update-opinions ask turtles [ set opinion-previous opinion let target one-of link-neighbors if target != nobody [ ;; différence de prégnance, avec petite tolérance let raw-dprev ([prevalence] of target) - prevalence if raw-dprev < 1 [ set raw-dprev 0 ] let dprev raw-dprev / max-prevalence ;; ~ [0,1] if dprev > 0 [ ;; distance sur le signe absolu (favorise des inversions quand Δprégnance est fort) let dmem abs(abs(opinion) - abs([opinion] of target)) ;; base-prob amplifiée par prevalence-weight (PAS de seconde division) let base-prob dprev * prevalence-weight ;; pénalité de polarisation bornée par adoption-floor let pol-penalty max list adoption-floor (1 - polarization-factor * dmem) ;; influence du voisin let p-adopt base-prob * pol-penalty * [influence] of target ;; effet de groupe (voisins du RECEVEUR alignés avec le SIGNE de l'émetteur) let sgn-emetteur sign ([opinion] of target) let gprob group-alignment-effective self sgn-emetteur let w group-impact-weight let alpha group-impact-alpha set p-adopt p-adopt * ((1 - w) + (w * (gprob ^ alpha))) ;; garde-fous if p-adopt < 0 [ set p-adopt 0 ] if p-adopt > 1 [ set p-adopt 1 ] ;; tirage d'adoption if random-float 1 < p-adopt [ let old-opinion opinion set opinion [opinion] of target set total total + 1 ;; dynamique d'influence set influence-previous influence if vary-influence = true [ if abs(old-opinion) > abs(opinion) [ set influence min (list 1 (influence + rate-infl)) if (influence-previous < 1 and influence = 1) [ if meta-ok = true [ if meta-links < meta-max [ set meta-links meta-links + 1 ] set meta-agents meta-agents + 1 ] set color yellow ] ] if abs(old-opinion) < abs(opinion) [ set influence max (list 0 (influence - rate-infl)) if (influence < influence-previous and influence-previous = 1) [ if meta-ok = true [ set meta-agents meta-agents - 1 ifelse opinion >= 0 [ set color blue ] [ set color red ] ] ] ] ] ;; comptage des inversions (changement de signe) if (sign old-opinion) != (sign opinion) [ set change change + 1 ] ] ] ] ;; modulation de la prévalence if modulation-prevalence = true [ if prevalence > abs opinion * 100 [ set prevalence prevalence - abs(opinion - opinion-previous) * influence * Rate-modulation ] if prevalence < abs opinion * 100 [ set prevalence prevalence + abs(opinion - opinion-previous) * influence * Rate-modulation ] if prevalence < min-prevalence [ set prevalence min-prevalence ] if prevalence > max-prevalence [ set prevalence max-prevalence ] ] ;; bruit additif if random-float 1 < noise [ set opinion opinion + (random-float 0.4 - 0.2) if opinion > 1 [ set opinion 1 ] if opinion < -1 [ set opinion -1 ] ] ;; mise à jour position 3D update-3d self ;; logging fin de boucle agent if (output = "Values" or output = "File") [ compute-statistics ] ] ;; inversion % (après la boucle) ifelse (total > 0) [ set inversion (100 * change / total) ] [ set inversion 0 ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; COLORATION ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to colorer ask turtles [ if color != yellow [ ifelse opinion >= 0 [ set color blue ] [ set color red ] ] ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; MISE À JOUR DU RÉSEAU (robuste + ponts + coloration + switch show-links?) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to update-networks ;; suppression de liens let doomed links with [ abs([opinion] of end1 - [opinion] of end2) > (link-removal-threshold / 100) ] let doomedProb doomed with [ random-float 1 < prob ] let n-remove min (list linksdown count doomedProb) if n-remove > 0 [ ask n-of n-remove doomedProb [ die ] set links-dead links-dead + n-remove ] ;; formation de liens let j linksup while [j > 0] [ let t one-of turtles if t = nobody [ stop ] ask t [ let myop opinion let candidates other turtles with [ not link-neighbor? myself ] let pool-homo candidates with [ abs(opinion - myop) < (link-formation-threshold / 100) ] let pool-bridge candidates with [ (sign opinion) != (sign myop) ] let friend nobody if any? pool-bridge and (random-float 1 < bridge-prob) [ set friend max-one-of pool-bridge [ abs(opinion - myop) ] ] if (friend = nobody) and any? pool-homo [ set friend min-one-of pool-homo [ abs(opinion - myop) ] ] if friend != nobody and (random-float 1 < prob) [ create-link-with friend set links-create links-create + 1 let same-sign? (sign opinion) = (sign [opinion] of friend) ask link-with friend [ set color (ifelse-value same-sign? [ green ] [ gray ]) set thickness linktick if show-links? [ show-link ] ] ] ] set j j - 1 ] end to meta ;; 1) On n'agit pas si le réseau est gelé if not network [ stop ] ;; 2) Pour chaque agent, tenter un lien vers un méta ask turtles [ ;; candidats = méta-influenceurs (jaunes) non encore liés à moi, ;; et qui n'ont pas dépassé leur plafond individuel de liens (meta-links) let pool other turtles with [ color = yellow and not link-neighbor? myself and (count link-neighbors) < meta-links ] if any? pool [ let friend one-of pool create-link-with friend ;; couleur/épaisseur cohérentes let same-sign? (sign opinion) = (sign [opinion] of friend) ask link-with friend [ set color (ifelse-value same-sign? [ green ] [ gray ]) set thickness linktick if show-links? [ show-link ] ] ] ] end ;; Applique la visibilité globale des liens selon le switch show-links? to apply-link-visibility ifelse show-links? [ ask links [ show-link ] ] [ ask links [ hide-link ] ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; STATISTIQUES RUNTIMES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to compute-statistics if output = "Values" [ let pre prevalence let mem opinion let infl influence let ag who let ti ticks let ess try let memed (count turtles with [opinion > 0]) / (pop / 100) let maj major output-print (word ess " ; " ti " ; " ag " ; " pre " ; " mem " ; " infl " ; " memed) ] if output = "File" [ let pre prevalence let mem opinion let infl influence let ti ticks output-print (word ti " " pre " " mem " " infl) ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; I/O : LECTURE FICHIER D’AGENTS ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to in_file ;; File d'entrée carefully [ set file-in user-file if (file-in != false) [ set list_data [] file-open file-in while [not file-at-end?] [ set list_data sentence list_data (list (list file-read file-read file-read file-read)) ] file-close user-message "File uploaded!" set in_data true ] ] [ user-message "File read error" ] data end to data clear-turtles clear-links let tick_to_load choice_iter ifelse (is-list? list_data) [ let filtered_data filter [ row -> first row = tick_to_load ] list_data create-turtles length filtered_data [ let my_index who let agent_data item my_index filtered_data set prevalence item 1 agent_data set opinion item 2 agent_data set influence item 3 agent_data set opinion-previous opinion set influence-previous influence if opinion < 0 [ set color red set agent-type "Left side" ] if opinion > 0 [ set color blue set agent-type "Right side" ] if influence = 1 [ set color yellow ] ;; Position initiale (2D/3D) update-3d self ] ] [ set in_data false user-message "Read error" ] ;; créer des liens selon vos règles update-networks apply-link-visibility recolor-links influenceurs update-opinions set repet_data true end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ÉVÉNEMENT EXTERNE ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to event ;; moving agents to the right or left side by increasing or decreasing the prevalence ask turtles [ ifelse meme_set = true [ if (to_left = false) [ if agent-type = "Right side" [ if opinion < 0 [ set opinion opinion + event_size if opinion > 1 [ set opinion 1 ] ] ] ] if (to_left = true) [ if agent-type = "Left side" [ if opinion > 0 [ set opinion opinion - event_size if opinion < -1 [ set opinion -1 ] ] ] ] ] [ if (to_left = false) [ if (opinion < high_meme and opinion > low_meme and prevalence < high-prev and prevalence > low-prev) [ set opinion opinion + event_size if (prev_change != 0) [ set prevalence prevalence + prev_change ] if opinion > 1 [ set opinion 1 ] ] ] if (to_left = true) [ if (opinion > low_meme and opinion < high_meme and prevalence > low-prev and prevalence < high-prev) [ set opinion opinion - event_size if (prev_change != 0) [ set prevalence prevalence + prev_change ] if opinion < -1 [ set opinion -1 ] ] ] ] ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; UTILITAIRES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to set-background-black ask patches [ set pcolor black ] end to update-3d [agt] ask agt [ set x3d opinion * 16 set y3d prevalence / 6 set z3d influence * 16 setxyz x3d y3d z3d ] end to-report safe-median [agentset varname] if not any? agentset [ report 0 ] report median [ runresult varname ] of agentset end to-report sign [x] ifelse x > 0 [ report 1 ] [ ifelse x < 0 [ report -1 ] [ report 0 ] ] end to recolor-links ask links [ let s1 sign [opinion] of end1 let s2 sign [opinion] of end2 ifelse s1 = s2 [ set color green ] [ set color gray ] set thickness linktick ] end ;; --------------------------------------------------------------------------- ;; IMPACT DE GROUPE (tous les voisins liés) ;; Retourne la proportion de voisins liés dont le signe d'opinion = sign-ref. ;; Si aucun voisin lié : retourne 0.5 (neutre). ;; --------------------------------------------------------------------------- to-report group-alignment-all [agt sign-ref] let nbrs [link-neighbors] of agt if not any? nbrs [ report 0.5 ] let same count nbrs with [ (sign opinion) = sign-ref ] report same / count nbrs end ;; --------------------------------------------------------------------------- ;; IMPACT DE GROUPE (k plus proches en opinion) ;; Choisit les k voisins liés les plus proches en opinion de agt, ;; puis renvoie la même proportion (même signe = sign-ref). ;; Si aucun voisin lié : 0.5 (neutre). ;; --------------------------------------------------------------------------- to-report group-alignment-k [agt sign-ref k] let nbrs [link-neighbors] of agt let deg count nbrs if deg = 0 [ report 0.5 ] let kk max list 1 min list deg floor k let agop [opinion] of agt let pool min-n-of kk nbrs [ abs(opinion - agop) ] if not any? pool [ report 0.5 ] let same count pool with [ (sign opinion) = sign-ref ] report same / count pool end ;; --------------------------------------------------------------------------- ;; IMPACT DE GROUPE EFFECTIF selon le mode sélectionné ("all" | "k-nearest") ;; --------------------------------------------------------------------------- to-report group-alignment-effective [agt sign-ref] ifelse (group-impact-mode = "k-nearest") [ report group-alignment-k agt sign-ref group-k ] [ report group-alignment-all agt sign-ref ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; EXPORT CSV (par essai) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to csv-begin if not csv-export [ stop ] set csv-file (word csv-basename "-" try ".csv") file-close-all if file-exists? csv-file [ file-delete csv-file ] file-open csv-file set csv-open? true ;; En-tête standardisé file-print "try,iter,tick,left_pct,right_pct,avg_opinion,med_op_right,med_op_left,med_prev_right,med_prev_left,med_infl_right,med_infl_left,links_remove,links_create,inversion_pct,change,total,fractale,major" end to csv-row if not csv-open? [ stop ] let avg-opinion mean [opinion] of turtles let opR safe-median (turtles with [opinion >= 0]) "opinion" let opL safe-median (turtles with [opinion < 0]) "opinion" let prevR (safe-median (turtles with [opinion >= 0]) "prevalence") / 100 let prevL (safe-median (turtles with [opinion < 0]) "prevalence") / 100 let inflR safe-median (turtles with [opinion >= 0]) "influence" let inflL safe-median (turtles with [opinion < 0]) "influence" let leftpct (count turtles with [opinion < 0]) / (pop / 100) let rightpct (count turtles with [opinion >= 0]) / (pop / 100) file-print (word try "," iter "," ticks "," leftpct "," rightpct "," avg-opinion "," opR "," opL "," prevR "," prevL "," inflR "," inflL "," links-dead "," links-create "," inversion "," change "," total "," fractale "," major) end to csv-end if csv-open? [ file-close set csv-open? false ] end
There is only one version of this model, created about 21 hours ago by Pierre-Alain Cotnoir.
Attached files
File | Type | Description | Last updated | |
---|---|---|---|---|
Projet_simulateur_20250801.png | preview | Preview for 'Projet_simulateur_20250801' | about 21 hours ago, by Pierre-Alain Cotnoir | Download |
This model does not have any ancestors.
This model does not have any descendants.