Wolf Sheep Predation Simple

No preview image

1 collaborator

Default-person Jason Stark (Author)

Tags

(This model has yet to be categorized with any tags)
Visible to everyone | Changeable by the author
Model was written in NetLogo 5.0.4 • Viewed 6 times • Downloaded 0 times • Run 0 times
Download the 'Wolf Sheep Predation Simple' modelDownload this modelEmbed this model

Do you have questions or comments about this model? Ask them here! (You'll first need to log in.)


WHAT IS IT?

A population is a group of individuals that belong to the same species and live in the same region at the same time. Can you think of an example of a population living in Louisiana? Populations can change over time due to births, deaths, and individuals moving from one population to another. Populations can interact with one another. One of the primary ways populations can interact is through the energy flow. Animals can eat plants, other animals, or both. There are a number of factors that can influence the size of a population within an ecosystem including the food available for both predators and prey as well as the birth/death rates.

YOUR TASK

In this investigation, you will explore how the size of both the predator and prey population changes over time in response to predation. You will explain how the size of a population of sheep and wolves change over time due to predation. Investigating Question: How do changes in the population of predators and prey affect the population of both in an area over time?

INVESTIGATION QUESTION

How do changes in the population of predators and prey affect the population of both in an area over time?

HOW TO USE IT

  1. Set the initial number of sheep and wolves.
  2. Choose whether grass is included in the simulation (if off, it is assumed sheep have unlimited grass)
  3. Press the SETUP button.
  4. Press the GO button to begin the simulation.
  5. Look at the monitors to see the current population sizes
  6. Look at the POPULATIONS plot to watch the populations fluctuate over time
  7. Press the GO button again to pause the simulation.

Parameters: INITIAL-NUMBER-SHEEP: The initial size of sheep population INITIAL-NUMBER-WOLVES: The initial size of wolf population GRASS?: Whether or not to include grass in the model GRASS-REGROWTH-TIME: How long it takes for grass to regrow once it is eaten

Notes: - one unit of energy is deducted for every step a wolf takes - when grass is included, one unit of energy is deducted for every step a sheep takes

THINGS TO NOTICE

When grass is not included, watch as the sheep and wolf populations fluctuate. Notice that increases and decreases in the sizes of each population are related. In what way are they related? What eventually happens?

Once grass is added, notice the green line added to the population plot representing fluctuations in the amount of grass. How do the sizes of the three populations appear to relate now? What is the explanation for this?

THINGS TO TRY

Try adjusting the parameters under various settings. How sensitive is the stability of the model to the particular parameters?

Can you find any parameters that generate a stable ecosystem that includes only wolves and sheep?

Try setting GRASS? to TRUE, but setting INITIAL-NUMBER-WOLVES to 0. This gives a stable ecosystem with only sheep and grass. Why might this be stable while the variation with only sheep and wolves is not?

Notice that under stable settings, the populations tend to fluctuate at a predictable pace. Can you find any parameters that will speed this up or slow it down?

HOW TO CITE

COPYRIGHT AND LICENSE

Copyright 1997 Uri Wilensky. Updated 2025 by Jason Stark for Modeling Instruction Biology.

CC BY-NC-SA 3.0

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Commercial licenses are also available. To inquire about commercial licenses, please contact Uri Wilensky at uri@northwestern.edu.

This model was created as part of the project: CONNECTED MATHEMATICS: MAKING SENSE OF COMPLEX PHENOMENA THROUGH BUILDING OBJECT-BASED PARALLEL MODELS (OBPML). The project gratefully acknowledges the support of the National Science Foundation (Applications of Advanced Technologies Program) -- grant numbers RED #9552950 and REC #9632612.

This model was converted to NetLogo as part of the projects: PARTICIPATORY SIMULATIONS: NETWORK-BASED DESIGN FOR SYSTEMS LEARNING IN CLASSROOMS and/or INTEGRATED SIMULATION AND MODELING ENVIRONMENT. The project gratefully acknowledges the support of the National Science Foundation (REPP & ROLE programs) -- grant numbers REC #9814682 and REC-0126227. Converted from StarLogoT to NetLogo, 2000.

Comments and Questions

Please start the discussion about this model! (You'll first need to log in.)

Click to Run Model

globals [grass]  ;; keep track of how much grass there is
;; Sheep and wolves are both breeds of turtle.
breed [sheep a-sheep]  ;; sheep is its own plural, so we use "a-sheep" as the singular.
breed [wolves wolf]
turtles-own [energy]       ;; both wolves and sheep have energy
patches-own [countdown]

to setup
  clear-all
  ask patches [ set pcolor green ]
  ;; check GRASS? switch.
  ;; if it is true, then grass grows and the sheep eat it
  ;; if it false, then the sheep don't need to eat
  if grass? [
    ask patches [
      set countdown random grass-regrowth-time ;; initialize grass grow clocks randomly
      set pcolor one-of [green brown]
    ]
  ]
  set-default-shape sheep "sheep"
  create-sheep initial-number-sheep  ;; create the sheep, then initialize their variables
  [
    set color white
    set size 1.5  ;; easier to see
    set label-color blue - 2
    set energy random (2 * 4)
    setxy random-xcor random-ycor
  ]
  set-default-shape wolves "wolf"
  create-wolves initial-number-wolves  ;; create the wolves, then initialize their variables
  [
    set color black
    set size 2  ;; easier to see
    set energy random (2 * 20)
    setxy random-xcor random-ycor
  ]
  display-labels
  set grass count patches with [pcolor = green]
  reset-ticks
end 

to go
  if not any? turtles [ stop ]
  ask sheep [
    move
    if grass? [
      set energy energy - 1  ;; deduct energy for sheep only if grass? switch is on
      eat-grass
    ]
    death
    reproduce-sheep
  ]
  ask wolves [
    move
    set energy energy - 1  ;; wolves lose energy as they move
    catch-sheep
    death
    reproduce-wolves
  ]
  if grass? [ ask patches [ grow-grass ] ]
  set grass count patches with [pcolor = green]
  tick
  display-labels
end 

to move  ;; turtle procedure
  rt random 50
  lt random 50
  fd 1
end 

to eat-grass  ;; sheep procedure
  ;; sheep eat grass, turn the patch brown
  if pcolor = green [
    set pcolor brown
    set energy energy + 4  ;; sheep gain energy by eating
  ]
end 

to reproduce-sheep  ;; sheep procedure
  if random-float 100 < 4 [  ;; throw "dice" to see if you will reproduce
    set energy (energy / 2)                ;; divide energy between parent and offspring
    hatch 1 [ rt random-float 360 fd 1 ]   ;; hatch an offspring and move it forward 1 step
  ]
end 

to reproduce-wolves  ;; wolf procedure
  if random-float 100 < 5 [  ;; throw "dice" to see if you will reproduce
    set energy (energy / 2)               ;; divide energy between parent and offspring
    hatch 1 [ rt random-float 360 fd 1 ]  ;; hatch an offspring and move it forward 1 step
  ]
end 

to catch-sheep  ;; wolf procedure
  let prey one-of sheep-here                    ;; grab a random sheep
  if prey != nobody                             ;; did we get one?  if so,
    [ ask prey [ die ]                          ;; kill it
      set energy energy + 20 ] ;; get energy from eating
end 

to death  ;; turtle procedure
  ;; when energy dips below zero, die
  if energy < 0 [ die ]
end 

to grow-grass  ;; patch procedure
  ;; countdown on brown patches: if reach 0, grow some grass
  if pcolor = brown [
    ifelse countdown <= 0
      [ set pcolor green
        set countdown grass-regrowth-time ]
      [ set countdown countdown - 1 ]
  ]
end 

to display-labels
  ask turtles [ set label "" ]
end 


; Copyright 1997 Uri Wilensky.
; See Info tab for full copyright and license.

There are 6 versions of this model.

Uploaded by When Description Download
Jason Stark 4 days ago Update Description Download this version
Jason Stark 4 days ago Fix4 Download this version
Jason Stark 4 days ago Fix3 Download this version
Jason Stark 4 days ago Fix2 Download this version
Jason Stark 4 days ago Fix Download this version
Jason Stark 4 days ago Initial upload Download this version

Attached files

No files

This model does not have any ancestors.

This model does not have any descendants.