Artificial Neural Net
Do you have questions or comments about this model? Ask them here! (You'll first need to log in.)
WHAT IS IT?
This is a model of a very small neural network. It is based on the Perceptron model, but instead of one layer, this network has two layers of "perceptrons". That means it can learn operations a single layer cannot.
The goal of a network is to take input from its input nodes on the far left and classify those inputs appropriately in the output nodes on the far right. It does this by being given a lot of examples and attempting to classify them, and having a supervisor tell it if the classification was right or wrong. Based on this information the neural network updates its weight until it correctly classifies all inputs correctly.
HOW IT WORKS
Initially the weights on the links of the networks are random. When inputs are fed into the network on the far left, those inputs times the random weights are added up to create the activation for the next node in the network. The next node then sends out an activation along its output link. These link weights and activations are summed up by the final output node which reports a value. This activation is passed through a sigmoid function, which means that values near 0 are assigned values close to 0, and vice versa for 1. The values increase nonlinearly between 0 and 1 with a sharp transition at 0.5.
To train the network a lot of inputs are presented to the network along with how the network should correctly classify the inputs. The network uses a back-propagation algorithm to pass error back from the output node and uses this error to update the weights along each link.
HOW TO USE IT
To use it press SETUP to create the network and initialize the weights to small random numbers.
Press TRAIN ONCE to run one epoch of training. The number of examples presented to the network during this epoch is controlled by EXAMPLES-PER-EPOCH slider.
Press TRAIN to continually train the network.
In the view, the larger the size of the link the greater the weight it has. If the link is red then its a positive weight. If the link is blue then its a negative weight.
To test the network, set INPUT-1 and INPUT-2, then press the TEST button. A dialog box will appear telling you whether or not the network was able to correctly classify the input that you gave it.
LEARNING-RATE controls how much the neural network will learn from any one example.
TARGET-FUNCTION allows you to choose which function the network is trying to solve.
THINGS TO NOTICE
Unlike the Perceptron model, this model is able to learn both OR and XOR. It is able to learn XOR because the hidden layer (the middle nodes) in a way allows the network to draw two lines classifying the input into positive and negative regions. As a result one of the nodes will learn essentially the OR function that if either of the inputs is on it should be on, and the other node will learn an exclusion function that if both of the inputs or on it should be on (but weighted negatively).
However unlike the perceptron model, the neural network model takes longer to learn any of the functions, including the simple OR function. This is because it has a lot more that it needs to learn. The perceptron model had to learn three different weights (the input links, and the bias link). The neural network model has to learn ten weights (4 input to hidden layer weights, 2 hidden layer to output weight and the three bias weights).
THINGS TO TRY
Manipulate the LEARNING-RATE parameter. Can you speed up or slow down the training?
Switch back and forth between OR and XOR several times during a run. Why does it take less time for the network to return to 0 error the longer the network runs?
EXTENDING THE MODEL
Add additional functions for the network to learn beside OR and XOR. This may require you to add additional hidden nodes to the network.
Back-propagation using gradient descent is considered somewhat unrealistic as a model of real neurons, because in the real neuronal system there is no way for the output node to pass its error back. Can you implement another weight-update rule that is more valid?
NETLOGO FEATURES
This model uses the link primitives. It also makes heavy use of lists.
RELATED MODELS
This is the second in the series of models devoted to understanding artificial neural networks. The first model is Perceptron.
CREDITS AND REFERENCES
The code for this model is inspired by the pseudo-code which can be found in Tom M. Mitchell's "Machine Learning" (1997).
Thanks to Craig Brozefsky for his work in improving this model.
Comments and Questions
links-own [weight] breed [bias-nodes bias-node] breed [input-nodes input-node] breed [output-nodes output-node] breed [hidden-nodes hidden-node] turtles-own [activation err] globals [ epoch-error input-node-1 ;; keep the input and output nodes input-node-2 ;; in global variables so we can output-node-1 ;; refer to them directly ] ;;; ;;; SETUP PROCEDURES ;;; to setup clear-all ask patches [ set pcolor gray + 2 ] set-default-shape bias-nodes "bias-node" set-default-shape input-nodes "circle" set-default-shape output-nodes "output-node" set-default-shape hidden-nodes "output-node" setup-nodes setup-links propagate reset-ticks end to setup-nodes create-bias-nodes 1 [ setxy -5 5 ] ask bias-nodes [ set activation 1 ] create-input-nodes 1 [ setxy -5 -1 set input-node-1 self ] create-input-nodes 1 [ setxy -5 1 set input-node-2 self ] ask input-nodes [ set activation random 2 ] create-hidden-nodes 1 [ setxy 0 -1 ] create-hidden-nodes 1 [ setxy 0 1 ] ask hidden-nodes [ set activation random 2 set size 1.5 ] create-output-nodes 1 [ setxy 5 0 set output-node-1 self ] ask output-nodes [ set activation random 2 ] end to setup-links connect-all bias-nodes hidden-nodes connect-all bias-nodes output-nodes connect-all input-nodes hidden-nodes connect-all hidden-nodes output-nodes end to connect-all [nodes1 nodes2] ask nodes1 [ create-links-to nodes2 [ set weight random-float 0.2 - 0.1 ] ] end to recolor ask turtles [ set color item (step activation) [black white] ] ask links [ set thickness 0.1 * abs weight ifelse weight > 0 [ set color red ] [ set color blue ] ] end ;;; ;;; TRAINING PROCEDURES ;;; to train set epoch-error 0 repeat examples-per-epoch [ ask input-nodes [ set activation random 2 ] propagate back-propagate ] tick set epoch-error epoch-error / examples-per-epoch plotxy ticks epoch-error end ;;; ;;; FUNCTIONS TO LEARN ;;; to-report target-answer let a [activation] of input-node-1 = 1 let b [activation] of input-node-2 = 1 report ifelse-value run-result (word "a " target-function " b") [1][0] end ;;; ;;; PROPAGATION PROCEDURES ;;; ;; carry out one calculation from beginning to end to propagate ask hidden-nodes [ set activation new-activation ] ask output-nodes [ set activation new-activation ] recolor end to-report new-activation ;; node procedure report sigmoid sum [[activation] of end1 * weight] of my-in-links end ;; changes weights to correct for errors to back-propagate let example-error 0 let answer target-answer ask output-node-1 [ set err activation * (1 - activation) * (answer - activation) set example-error example-error + ( (answer - activation) ^ 2 ) ] set epoch-error epoch-error + example-error ask hidden-nodes [ set err activation * (1 - activation) * sum [weight * [err] of end2] of my-out-links ] ask links [ set weight weight + learning-rate * [err] of end2 * [activation] of end1 ] end ;;; ;;; MISC PROCEDURES ;;; ;; computes the sigmoid function given an input value and the weight on the link to-report sigmoid [input] report 1 / (1 + e ^ (- input)) end ;; computes the step function given an input value and the weight on the link to-report step [input] report ifelse-value (input > 0.5) [1][0] end ;;; ;;; TESTING PROCEDURES ;;; ;; test runs one instance and computes the output to test ;; output the result ifelse test-success? input-1 input-2 [ user-message "Correct." ] [ user-message "Incorrect." ] end to-report test-success? [n1 n2] ask input-node-1 [ set activation n1 ] ask input-node-2 [ set activation n2 ] propagate report target-answer = step [activation] of one-of output-nodes end
There are 9 versions of this model.
Attached files
File | Type | Description | Last updated | |
---|---|---|---|---|
Artificial Neural Net.png | preview | Preview | over 12 years ago, by Reuven M. Lerner | Download |
This model does not have any ancestors.
This model does not have any descendants.